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SUMMARY OF RESEARCH COMPLETED

Research on gyrotrons under this contract was carried out over a four-
year period with support by the Office of Naval Research. The central
emphasis of the research was to expand the theoretical base underlying
gyrotron-type amplifying mechanisms and oscillators, and to test the theory
and explore new mechanisms by direct experimentation.

The most notable advances include the following:

1. Complete formulation of the linearized theory of gyrotron

slow-wave amplification for TEOn and TMon—modes including
effects of finite beam geometry and finite thermal velocity
spread.

2. Experimental demonstration of slow-amplifi:ation for TE01
® modes, with observed gain of 53 db, power output of 20 kW,
| and electronic efficiency of 10% at 6 GHz.

\ 3. Experimental operation of quasi-optical gyrotron oscilla-
"i tor, with power measurements on harmonics up to the ninth,
giving sub-millimeter wave oscillations using magnetic fields
below 15 kG and beam energies below 20 kV.
- Copies of all major publications and reports which resulted from this
research program are appended to this report. The list of these follows:

1. "Linear Theory of Gyro-Slow-Wave Amplifier for TE,,-Modes in a

Dielectric-Loaded Cylindrical Waveguide,'" Soo Yong Park, J. Mark Baird,
P and J. L. Hirshfield, unpublished.

2. "Linear Theory of Gyro-Slow-Wave Amplifier for TMy,-Modes in a
Dielectric-Loaded Cylindrical Waveguide,'" Soo Yong Park, J. Mark Baird,
and J. L. Hirshfield, unpublished.

‘® 3. Invited paper. 'Theory of a slow wave cyclotron amplifier,” K. R.

Chu, A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park,
and J. M. Baird, Int. J. Electronics, 51, 493 (1981).
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Beam,'" H. Guo, L. Chen, H. Keren, and J.L. Hirshfield, Phys. Rev. L
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Lett. 49, 730 (1982). —
5. "Cyclotron Harmonic Maser," J. L. Hirshfield, International Journal of l
Infrared and Millimeter Waves 2, 695 (1981).
6. "Space Charge Effects in a Gyrotron Employing a Solid Electron Beam," _
H. Keren and J. L. Hirshfield, International Jourmnal of Infrared and “4
Millimeter Waves, 2, 1097 (1981). N
-
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Liang, and J. L. Hirshfield, Phys. Rev. Lett. 49, 1556 (1982). R
8. "Bernstein Mode Quasi-Optical Gyroklystron,'" Z. Liang, N. A. Ebrahim, 4
and J. L. Hirshfield, International Journal of Infrared and Milli- -
meter Waves 4, 423 (1983). 1
9. "Electron Prebunching and High Harmonic Interaction in a Bernstein ;
Mode Quasi-Optical Gyrotron," N. A. Ebrahim, Z. Liang, and J. L. L
Hirshfield, unpublished. {
10. "Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the 'T
Gyration Frequency,'" Qiangfa Li, Ph.D. Thesis July 1984 e
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LINEAR THEORY OF GYRO-SLOW-WAVE-AMPLIFIER FOR TEon-MODES
IN A DIELECTRIC-LOADED CYLINDRICAL WAVEGUIDE

I.  INTRODUCTION

Recently much interest has been shown in gyrotron-type microwave generating
(or amplifying) devices[l] utilizing transverse electron beam energy in a
strong guiding magnetic field. An electron gyrating in a magnetic field
shows negative mass response in its rotational motion when it interacts
with an electromagnetic wave. This negative mass behavior leads to an

azimuthal bunching and thus induces a negative mass instability.

There are two types of instability driving forces; a direct electric force

E and a magnetic pondromotive force V x §'; the former one leads to the
famous cyclotron maser instahility (CMI)[2] and the latter one leads to

the Weibel instability[33. Chu and Hirshfield[4] analyzed both mechanisms

in a unified treatment for a plane wave in a uniform (unbounded) plasma

and showed that they are competing with each other -- the cyclotron maser
instability dominating in a fast wave region and Weibel instability
dominating in a slow wave region. For a plane wave in an unbounded system,
the electrons in the plasma itself play the role of active medium to make the

phase velocity fast or slow. This requires a very dense electron beam.

In practice, it is desirable to provide this separation in a more efficient
way. A fast wave can be easily achieved by a waveguide with a hare conduc-
ting wall because the phase velocity in a wavequide is always greater than
the speed of 1ight in a free space. Conventional gyrotrons operate near the
cutoff region where the cyclotron maser instability is dominating. In order

to provide a slow wave where Weibel instability is dominating, one must

S S e D

R e R R T T R S R R T rrrerrer b il Mt Anis Sal Gk Al A et Ak B i e B B0 v A sy ape o e o |

1

T I
A Ap b




ML P A

I's

T TR N TV TV WYYy i S i O v ——
T T T A ATt A A AR Bl Nt i ardi At i NN et a0 it aivk ek abh e o ne et o en S o .v‘-,.,ﬂ

introduce a slow wave structure inside the waveguide -- either a periodic

structure or dielectric layers.

A dispersion curve for a waveguide with slow wave structure shows a nearly-
straight section with a gentle slope within the range of moderate electron
beam energy over a wide range of frequencies. Then the electron beam line
can be chosen to be parallel and close to this section of the dispersion
curve inducing strong instability over a wide range of frequencies. This
broad band instability may provide us with a wide-band amplifier or slow-wave

gyrotron-type device.

The dispersion curve with dielectric layers shows an almost unlimited nearly
straight section, while the one with periodic structure bends over becoming

periodic which 1imits the intrinsic bandwidth. Of course, even with dielectric

layers the coupling between eiectron beam and electromagnetic wave is
substantially reduced at higher frequencies limiting its bandwidth. However, W
this limitation seems to be less severe than that for waveguides with periodic
structure. Another advantage of dielectric layers over periodic structure A
may be its simplicity in fabrication and theoretical analysis. In this

paper we restrict the analysis to an amplifier with dielectric layers.

We consider a hollow electron beam, initially with each electron gyrating in {
an equilibrium orbit in a uniform guiding magnetic field, introduced into

an interaction region of a cylindrical waveguide loaded with an arbitrary

number of concentric dielectric layers. The electrons now interact with the
electromagnetic wave, get modulated and exchange energies. The development
of the electron state and the electromagnetic wave along the interaction tube

is completely determined by coupled Maxwell-Vliasov equations.

-2-
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With our primary interest in the theory for an amplifier, we assume that the

[ ] system is stationary in time (no absolute instability) and then one can reduce -

the problem into a one-dimensional boundary value problem which can be analyzed

by Laplace transformation. The coupling between the input signal and the

dielectric slow wave structure for TEgyp-modes. Whenever assumptions are made

b beam modes is completely determined by the boundary condition at the input i
end of the amplifier which means that one can calculate the insertion loss. .

» In this paper we wish to carefully develop a gain theory of an amplifier with '
{

we point out their motivation and Timitation. Throughout this paper we

assume that electrons and electromagnetic waves are described by linearized
Vlasov-Maxwell equations and that the space charge effect can be neglected.
Furthermore, we make two more technical assumptions: the coupling through the

electron beam between TE and TM modes, and between different radial modes, is

e

negligible; otherwise the analysis is completely general.

In Section 2, an expression for the perturbed electron distribution function

in terms of the integral over unperturbed characteristics is obtained for

an arbitrary electromagnetic wave,

In Section 3, the linearized Maxwell equations with a source term from the
perturbed electron beam are discussed. The TEyp-mode is separated out

and the dispersion relation including the source term is derived. Here we
| extensively use the results of a general ana1ysis[5] for an empty waveguide

loaded with multilayers of dielectrics obtained previously.

In Section 4, the source term for a hollow electron beam is calculated.

The calculation is straightforward but tedious, and two appendices at the end
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are given for this section. Two major complexities are due to the finite
geometry of the electron beam and the non-harmonicity of electromagnetic
waves seen by electrons. The former one was often neglected in earlier work
and the latter one requires a harmonic expansion using the Graf's Addition

Theorem for Bessel functions.

In Section 5, the dispersion relation is solved to calculate gains. Some
specific examples are calculated for various sets of parameters. In the last

section, the physics learned from this work is discussed.
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II. LINEARIZED VLASOV EQUATION

Consider that a hollow anular electron beam (such as from a magnetron injec-
tion gun) is introduced along a guiding magnetic field into one end of a
cylindrical waveguide which is loaded with an arbitrary number of concentric
dielectric layers. The electron beam is assumed to be sufficiently tenuous
so that its space charge effect can be neglected initially in its
equilibrium state in a uniform magnetic field, and thus each electron is

gyrating about its guiding center at r = R with its Larmor radius rL.

The electrons now interact with an electromagnetic wave and azimuthal bunching

occurs, leading to a negative mass instability if the conditions are right.

Neglecting the collision effect between electrons, the dynamical development

of the electron state in an electromagnetic field is qoverned by the Viasov
equation. With the electron distribution function f(?,ﬁ;t) in the phase

space, where
U=79/m=17Vand thus v= (1-v2/c2)=1/2 = (1 + w2/c2)1/2,
the relativistic Vlasov equation reads

3f/3t + U/v * V,f - e/m (E + U/cy x H) * 9,f =0 (2.1)

which is coupled to the Maxwell equations through E and H.

Generally, it is not possible to solve such a problem analytically. However,

in a strong magnetic field, one can linearize the equations by considering a

-5.
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and
- _ 3 u ~
Jg (k) = -Ne ‘/h u 1$;cos£ £ (k) (4.6)

The source term Fn(k) in (4.4) represents the amount of radiation in the
n-th radial waveguide mode due to the induced current Jé(k). The normali-
zation factor Cy in (4.5) defined by (3.16) is related to the total power
flow throughout the waveguide. The first step in solving (4.4) is to calcu-

late the Laplace transformation of the perturbed electron distribution function

f1(k).

—~

fi(k): Perturbed Distribution Function

Let us first consider the perturbed electron distribution function (2.12)

with the fields for TE,,-mode (3.10):

(4.7)
t af uy, af of
- & -juwt’ ' _ﬂ_ o Eﬁ_ Y ' )
fi(2) = mf dt'e {[E (z*) + Hu(z )(cv auL  CY 3y >]Zl(l°‘n|r Jeose
t'Z/Wl

f
- [(Ee(z') +HL(2') :—'y'—) (la,[r')cos x* + H,(z') -‘-Z (JogIr )mn‘lilQ ER—}

where the integration is to be carried out over the characteristic ("particle"

trajectory) given by:

z' zz+v (t'-t)
w' = U+ wc(t'-t)
2 1172
r' z (R® +r{ - 2Rr cosy') (4.8)
U - 9 s W
Vg 2y 9 FR T B Q¢
-19-
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IV. LAPLACE TRANSFORMATION

An unstable system can be correctly analyzed by Laplace transformation

(not Fourier analysis) defined by

I-'(k) s/c;oéze'ikzF(z) (4.1)

where k is a complex variable with a sufficiently large negative imaginary
part to guarantee that the integral (4.1) can be well defined. (Recall that
in unstable system F(z) can be an exponentially growing function of z.)

The Laplace transformation of derivatives of function requires information on

boundary values at the input end (z = 0) as

%-z- (k) = ikF(k) - F(o)
(4.2)

2 ,-
-k“F(k) - ikF(o) - -—- 5 (0)

(k)
dz

Applying the Laplace transformation on the Maxwell equations (3.12) and (3.15)

with the boundary condition (3.17), i.e., EG(O) = 0, one obtains

%Hr(k) = -kEe(k)

- - (4.3)
e H (k) = o, lE (k)
and d
E
2 2\- o 8
(0 - k)Eg(K) = P (k) = 72 (o) o
where . 1wt
Pn(k) z i -c-e Ellq /21rrdr z (Ia |r)J (k)
(4.5)

-18-
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Substituting (3.14) into (3.12) one obtains the equation for the n-th radial

modes:
- d%E (z)7dz? - k2 Eg(z) = Py(2) (3.15)
where
Pa(z) = l/CN./éwrdr Z; (laglr) i w/c e'Wt 4r/c Jg
c X 2 (3.16
N2 erdr [A;z4 (Ianlr) + K7 (lanlr)] -16)

(A} = 1, A; = 0).

-17-
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and
2:1 [- d%Eg(z)/d2? - k% Eg(2)] 2 (laylr) = i w/c Wt am/c Jg
n:
(3.12)
(0,2, = w?/c? - krz,)
where
Je = -ﬁ3u 6' U/'Y fl
(3.13)
Jr = Jz = 0.

The condition, Jp = J; = 0, is an artifact of the assumption iv) which
allowed us to concentrate on TE-mode field (E; = Er = Hg = 0). Actually,

if one calculates J, and J. using the same f} in Jg, they are not small,
however, what is small is their coupling with fields. From (3.8), J, and

Jr are the sources of T type fields (Ez, Epr, Hg) and lead to a possible

coupling to TM-mode. But, due to the assumption iv), the TM-modes are completely

mistuned and their coupling to the TE-field is small. Therefore as far as one

can neglect TE-TM coupling, one can neglect the condition J; = Jp = 0,

Furthermore, with the assumption v), one can expand the source term in (3.12)

in temms of radial modes as
i e oWt an/c Jg = P (2)Z) (laglr) + 2 P (2)Zy (Jan'[r)  (3.14)
n'#n
and keep only the first term since that is the only term which couples to the
n-th radial mode resonantly. The expansion of the source term in radial

eigenmodes (3.14) can be easily done by applying the projection operator

l/CN‘/bwrdr Z1 (lan|r) on the source term (Cy is a normalized constant).

«16-
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and no assumption was made on the 2z and r dependency of the fields.
However, for convenience, we have expanded the radial function in terms of a
complete set of radial eigenmodes in empty waveguide. In practice radial
eigenmodes with different n are well-separated and one can tune tre electron
beam so that it can interact resonantly with only one radial mode. Then one
can neglect the coupling between different radial eigenmodes. So far, we
have assumed:
i) linearity - small perturbation
ii) tenuous electron beam - neglect the space charge effect
iii) stationary in time - amplifier theory
iv) cylindrically symmetric TE-mode

v) only n-th radial mode is excited

The first two assumptions, i) and ii), are ess#.tial within the scope of the
present work and the last two assumptions, iv) and v), are technical simpli-
fying assumptions which could be easily removed as will be discussed in a
separate work. The third assumption, iii), is for a true amplifier without
absolute instability which will also be discussed in a separate paper.

These are all the assumptions we make in this paper.

We emphasize that we haVe not made any assumption on the z-dependency of

the fields. This will be completely determined by the dynamics and the boundary

conditions at the input end.
Substituting (3.9) into (3.7), one obtains

3 / H = - dE /d
i w/c Hp(2) g(2)/dz (3.11)

w/c Hy(z) = fan| Eglz)

-15-
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;;Q Since we are interested mainly in an amplifier theory, we assume that the

i;' system is stationary in time, and then one can write the most general fields

for TE- mode (E; = Ep = Hg = 0) as

" Eg = e-]wtz E Z)Zl |Ozn|r‘

iH, = e-wt Z Hy(2)Z, (lag!r)
y (3.9)
Hr = e 1wtz Hr(z)zl (Ianlr)
: n=1
ﬁzg = wz/c2 - kﬁ)
£ : :
: in the innermost region, and
» hg m 3 . . (]
{ el)) - e““’tZ e{) (2)2) (lojir) + EY) (2)7; (lefir)]
o {1 = et D i) @)z, (lofir) « AL ()7, (ledin]
N n=1 (3.10)
x Hy = "th i) (2)zy (lediry +« AL )7y (ledin)
! 2 2.2 2
(@) = €p; w°/c° - kp)
[
g where kp is a wave number determined by the boundary conditions of the empty
waveguide and Z,, 71 denote Bessel functions according to
. if ol
Jy(x) Yo(x) ifac > 0
~ Ig(x) Kg(x) ifag <0 .
The fields in (3.10) are connected to those in (3.9) via a “transfer matrix"
" as shown in Paper I. Note that, in (3.9) and (3.10), the assumption of

stationary in time allowed us to consider a single frequency (~e'iwt) behavior
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substantially alter the dynamic character (beside a possible small shift in

the resonance frequency).

Now, let us study the perturbed part of electromagnetic field (RF part) given
by (3.5) and (3.6). In the case of azimuthally symmetric states (3/06 = 0),
the Maxwell equations (3.5) can be grouped into two parts: TE-mode part,

which involves (Eg, Hz, Hpidg)s

- 3E¢/32 = - 1/c M /ot
1/r 3/3r (rEg) = - 1/c 3Hy/3t (3.7)
3Hp/3z - BHp/3r = 1/c 3Eg/3t + 4n/c Jg

and TM-mode part, which involves (Hg, E;, Ep; Jp, Jg),

3Er/3z - BE,/3r = 1/c 3Hy/dt
- QHg/9z = 1/c oEr/dt + 4m/cdp (3.8)
1/r 3/3r (rHg) = 1/c dE; /0t + 4m/c J,.

In general, these two sets of equations are coupled to each other through the
source terms. In Paper I, we have shown that, for the azimuthal symmetric
case, the boundary conditions between dielectric layers and on the conducting
wall do not mix TE and TM modes. Therefore, in the azimuthally symmetric

case the only place where TE and ™ mode coupling can occur is through the
source term. However, if the electron beam is sufficiently tenuous and the TE
and ™ modes are well-separated so that the electron beam can couple resonantly
with only one of the modes, one may neglect the mixing. In this paper, we

will concentrate on the TE-mode given by (3.7), neglecting the coupling to the

T™ mode.
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First, by substituting the perturbation expansion (2.2) into (3.1) and (3.2)
and separating the zeroth and the first order parts, one obtains, in the zeroth

order,

3
p -efd uf, = 0
° f ° (3.4)

Jo= -efddu U/y £, =0

and, in the first order.

vxt o= - 1/¢c /0t ve E, = 4P

1 1 1 1

> > -+ > (3'5)
v x Hy = 1/c 3Ey/3t + 4m/c J4 VeR =0

where
3

Py = -ﬁ uf .
! : (3.6)

-> 3 =
3) = -efad iy 1y

Obviously, the condition (3.4) on the equilibrium part of electron distribution
function cannot be fulfilled for a pure electron beam. This is because we

have neglected the space charge effect which prohibits a simple perturbation
expansion such as (2.2). With the space charge effect of the electron beam,
the zeroth order fields in the perturbation expansion (2.2) should include

the part of the static electric field and static diagmagnetic magnetic field

in addition to the guiding magnetic field B,. This again requires redefini-
tion of the unperturbed beam function fy and leads to a whole new problem which
is beyond the scope of this work. Therefore, throughout this paper, we assume
that the electron beam is sufficiently tenuous so that one can neglect the
space charge effect compared with the strong guiding magnetic field. Since

we are mainly interested in instability properties which are due to a resonant

interaction, one expects that such a static space charge effect may not
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Figure 3.1 Cross-sectional view of the cylindrical wavequide loaded with an

Acaim k.

arbitrary number of dielectric layers. A hollow annular electron beam is

confined only in the central vacuum region.

In case of no source term present (empty wavequide), the problem has been

solved completely in the previous paper(6] which will be referenced to as ]
Paper 1 from now on. Without source terms, the cylindrical symmetry allows ﬁ
us to use a Fourier transformation along 2z and the axial wave number k :

is an orthogonal eigenmode number., Furthermore, for azimuthally symmetric

fields, TE and ™ modes are decoupled. However, with the source terms which

d Al bal i

can in general couple all possible modes, one must be careful to make such a

)

reduction, Since the source terms are present only in the innermost vacuum

g

region, in this paper, we will concentrate on the Maxwell equations (3.1)
with source (3.2) while referring to the Paper 1 for the part which can be

handled in the same way as in the empty waveguide.
-11-
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[I1. MAXWELL EQUATIONS

Consider a circular cylindrical wavequide loaded with an arbitrary number of
concentric dielectric layers which serve as a slow wave structure. We assume
that the innermost region is a vacuum (€ = p = 1) where the hollow annular elec-

tron beam is present as shown in Figure 3.1.

Maxwell equations in the innermost region,

-+ - ->
Vx E = -1/c 3H/3t Ve©Lb = 4np
-> -> -+ -+ (3-1)
Vx H=1/c 3E/3t + 4r/c J v-H=20
are coupled to the Vlasov equation through source terms,
p= -/;13uf
-> -
J = -fd3u /Y f. (3.2)

Electromagnetic fields in a dielectric layer satisfy sourceless Maxwell

equations,

]
o

vx E0) = - ugye afili) /ot e; ve EH) .

vx Bl = e /e ot (i) /0 v )

0 (3.3)
(i=2,3 ..., N).

These equations are supplemented by boundary conditions: The fields in one
region are connected to the fields in the adjacent region through the boundary
conditions that Ez, Eg, H; and Hg be continuous (Er and Hr are related to these
through Maxwell equations). Also fields in the innermost region must be
regular on the axis and the fields in the outermost region satisfy the boundary
condition that E; and Eg vanish on the conducting wall (again, the condition

on He is not independent).
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notational convenience, we will suppress the subscript 1 in E and H ):
fy = eﬂﬂ/;_z/v”dt' {Eé af,/ou, + E, 6; af y/0u, +
Hi © 8 (u /oy 3f /du, - u, /ey 8f /du ) + (-E, * 6 (2.11)

+ Fi’l - R u,/cy + H) e; ° R u /cy) 1/9 afo/aR},

The first term in (2.11) is the driving term for a conventional TWTA insta-
bility, the second temm is for the famous cyclotron maser instability and
the third term for the Weibel instability. Notice the characteristic
asymmetric derivative in the third termm which picks out only the anisotropic
part of velocity distribution in fo- Finally, the last term represents all
the effects of a bounded and spatially non-uniform plasma. In terms of
variables given in Figure 2.1, one can write (2.11) as
t
f1 = E/mJC-z/v dt '{E; 8fo/3u, + (Ep sink' + Ej cost') 3fy/3u,
I

+ (-Hp cos§' + Hg sing') (u /cy afg/3u, - u,/cy 3fy/du)) ( )
2.12

+ [(-Ep sin X' + Ej cos X') + (Hp cos X' + Hy sin X') u,/cy
- Hy sin ¢' u /cv] 1/ 3fy/0R},

In order to carry out the integrél over the characteristics, one needs to
study the possible electromagnetic waves in the waveguide which are governed

by Maxwell equations and boundary.conditions.




Figure 2.1. Cross-sectional view of the "unperturbed" characteristics (an
electron "trajectory" in a uniform guiding magnetic field). 0 is the common
center of the hollow annular electron beam and the waveguide, G is a guiding

center of an electron and E' is the position of the electron at t'.

A set of the invariants of the unperturbed characteristics can be easily found:

the longitudinal velocity component Vi the magnitude of transverse velocity v,
(and thus ¥) and the radius of guiding center R. These are three independent
invariants convenient to use to represent a realistic equilibrium electron

distribution function, fo = fo (u,, u,, R).

Noting the relation R = (r'2 + rE - 2r'rLcosE')1/2, the velocity gradient can

be written as.

V,'fo = 2 3fy/du, + &) afg/du, + (Vy'R) 3fy/3R

Vy'R = & ?R/du, + & 1/u; 3R/a¢g: (2.10)

= 1M (8] cosy' - & siny') = - 1/0.6

where the capped quantities represent unit vectors for the corresponding

variables. Substituting (2.10) into (2.8), one obtains (for the sake of

-8-
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Equation (2.6) tells us that f, is an arbitrary function of invariants of the

characteristics and equation (2.7) can be written as an integral form:

f1 (X, ©, t) = e/mft dt' (Ei + U'/cy x 2’1) *Y%'fo (2.8)
t-z/v,
from which it is clear that the electron beam is introduced from one end of
the gquide in its equilibrium state and the perturbation grows in the direction
of the velocity gradient of the equilibrium distribution function as the
beam moves along the waveguide. The "unperturbed" characteristic, (2.5),

which is nothing more than a "particle" trajectory in a uniform magnetic

field, can be easily solved to be

nd’} A Ay

u'=zu, + € u,

X' X(t) + 2 Uy (- t) + (8- éd'b)r,_ (2.9)
where

8l = X cos¢' + ¥ sin¢’

3& = -X sing' + y cose’

o = o(t) +w (t' - t), wes=Qch

and PL =u,/Q = v,/ (v, = u,/7) 1is the Larmor radius.

The geometrical representation of the characteristics is shown in Figure 2.1.

The relation between angles is given by &'= 7/2 -« (¢' - 6'), ¥'

and X' = - ¢"'.
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small perturbation about an equilibrium state in a strong uniform magnetic

field;
f="fy+ f }
H = Eo + H) (2.2
£ =F.

Substituting (2.2) into (2.1) and separating it into the equilibrium part

(zeroth order) and the linear perturbed part (first order), one obtains

/3t + U/y * Vfy +Q 2 xi/y - Vf, =0 (2.3)
:
b and
!’". A
L o /At + U/ * Vf + Q.2 x T/ V=
: - - - (204)
E_ e/m (Ey + u/cy x Hy) Vufo
i where Q. = eBy/mc is the cyclotron frequency of an electron in its rest frame. ~
Y

Following a well-known technique[sj, one can cast the left-hand side of both

e

A PTp——
g K
‘ . O

1
.

(2.3) and (2.4) into total derivatives along an "unperturbed" characteristic,

X=X (X(t), T(t); t'-t) and T = T (X(t), U(t); t'-t) defined by E

. - 5
g dx'/dt' = T /7' (2.5)
! du'/dt' = . 2 x U /v
€ -
|

such that X' = X (t) and @' = U (t) at t' = t.
- Therefore one can write (2.3) and (2.4) as )
s dfy/dt' = 0 (2.6)
2 and
¢ dfi/dt' = e/m (E] + @/cy' x H}) * V,'f, (2.7) -
- where the primed quantities are the values at a point on the characteristics
’; defined by (2.5) and the total derivative is taken along them,

-6-
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It will be convenient to introduce scale variables as

a s |a|R = |°n|
= laglRs o = la,lr = A ulL (
. (4.9)
X' = I |r| - lun,
= un ] a” = a uF
C
and then the geometric interpretation of the characteristics (4.8) in terms {

of these scale variables can be repreSented by a triangle as shown in Figure 4.1,

(
(
(
Figure 4.1 Triangle formed by the center of the waveguide 0 (also the {
center of the hollow annular electron beam), the guiding center of an
electron G and the electron position E' at "time” t'. {
It will also be convenient to introduce a sign factor 3‘ as
2 {
~ 2 2_ 1 ‘fﬂn>0
G:GH/IQn’ = 1 1f 2( 0
- a
n (4.10)
2 !
2 _w 2
(Gn=—2--kn)
c
-20-
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Recalling that the Bessel function Zg(|a,|r') represents either J,(|op|r')

or Ip(ja,|r') depending on whethercxﬁ is positive (fast wave) or negative

(slow wave), one can write Bessel function relations as

% 1., ~ 22 _
Z(x) + 2 2,(x) + (o - z )Z,(x) =0
1 - .
7 (2, (x) - aEm(x)) = Z)(x) (4.11)
Lz, .(x) +az, . (x) =22 (x)
2 g-1 241 X "L

Z,(x) = (=31 Zy(x).

One can write (4.7) in terms of the scale variables, (4.9), and convert the

t'-integration into z'-integration using the characteristics, (4.8), as

lw 2=2' la | of a, af
e -fut Zdzt 'Y o 1% 0 . < n g
R A P B e e
cla_| a
:%.zfo )] Zl(x')cosa' - [(Ee(z') —5—9— + Hr(z') —%r)zl(x?)cosx' +
(4.12)

vy A of
Hz(z ) 7" Zl(x')isin¢' ] aa_o}_

Using the Graf's addition theorem of Bessel functions applied to the triangle

shown in Figure 4.1 renders us

Zl(x')cose' = z a® Zs+1(aL)Zs(a)cos sy!

$==w

. . (4.13)
- ;Z_:S"le‘s“ 2:(a )2 (a)
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Zl(x')cosx' = S ZS+1(a)ZS(aL)cos sy!

(7
[
)

8

- > ;5+1e15""zs(aL)z;(a)

S
— s Vs
2: a Zs(ai)ZS(a)cos s¥' isiny

Zo(x‘)isinw'

(7]

- 5’: ;s+1eisw'(zg(aL) .:_zs(a) + :—L ZS(aL)Z;(a)>

SSew

Substituting (4.13) into (4.12) and using (4.8) for ¥', one can cast (4.12)

into the fom

f,(2) e g-lut Z oSt "S"pfdz G(z-2')F(2")

mc =
(4.14)
G(z-z') = 7 ei(w's“c)%ii'
where
Cla,| af a, of  a af
F(z') = [Ee(z') l;" =2+ Hr(z')(v"-aa—% TLET,_)]ZQ(aL)Zs(a)
+ [ 5 ' 1) L)z a2 00) (4.15)

a af
- H,(z') 7L<Z;(a ) $2,(a) + -:—I:zs(a,_)z;(a))] ol

The Laplace transformation of (4.15) can be readily obtained by the convolution

t heorem

Fk) = - & etot S oStV g F (k) (4.16)

SEBwm

-22-
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where

G(k) =1 =Tk ;Qs(k) = wy - sQ. ~ kuy

1
-

- a" af L af 7! ( )Z ( )
Eq (k) - 5a—°+Hr(k)( 5 Y )] Aot

F(k)

(4.17)

- c ~ a
.,.([ E, (k) [ + H_(k) %) Z.(a )2, (a)

afo

- a
- H_ (k) 7" (Z;(aL) :—Zs(a) + = a Z (aL)Z (a>] 57 .

Using the Maxwell equations (4.3) in (4.16) with (4.17), one obtains the

final expression

dhudunl i &

- Ia I/Q =
e fwt '"n!"%c Z as+lei5¢

p ~ e
fylk) = -1Ey (K)o w/c

St

af afo

1 0
’nﬂt) [“”aaL - klu, aaL

%o )]z( )2, (a)
- U a a
a2, L (4.18)

el ot AV TR

sQ. a,
[—(T 3 Zs(aL)Z (a) - Zs(aL)Z (a)]aa l

el Al

The first term in the first bracket is from E_L(CMI). the second term is from

V_Lx ﬁl (Weibel), and the second bracket represents the effect of non-uniform

plasma.
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[ jb(k): Induced Current

jrj The integration in the induced current Jb(k) given by (4.5) and (4.18) requires

A

) a specific form of beam function f, (u”, u,, R) while we still want to maintain
:' its generality. One can do this by considering the following identity, for

iii an arbitrary function fo(u , u,, R);

fou, »u .R) = du®, 2vuidu12nR°dR°fo(u°".uj_,Ro)f(u 22U oR) (4.19)

;]. where ' {

~

fo(u, »u,R) = Flu, u )F,(R)

T ) . (4.20)
r . . - o -
- Filuy sup) = 8luy, o) gy s (upuy)
3
C :
P
L 1 0
@) . A . i
r- Observe that the “S-distribution" function f, represents a "cold" beam with
E _ infinitely "thin" guiding center distribution and is normalized to be one
{ electron per unit length. Equation (4.19) merely shows that an arbitrary
|

‘j.-

beam function fo(u”, u,, R) can be constructed out of "S-distribution”
function ?; with the “weight" function fo(uﬂ, u3, R%) which contains all the
information on the beam spread. The main advantage of using such a represen-
tation is that it allows us to carry out the required integration in (4.5)

without introducing any specific assumption on the beam function f,.

f' With (4.19), one can write (4.5) with (4.18) as Y|
- ° LY
L Jg(R) = ﬁu°" 2mufdu’ 2nROdR° £ (u°, wufLR%) Jg(K) (4.21)

° -24- 4

B . . B VI U L. R . . N - - :
L . i e A S et N s a o o aanAt AT ARl AN AR Rl AL A Beisndh I APPSR P e PIAR SR ) . |




lo

where

i

- 2 . m
iEe(k) gg- eiut 1 S+{/& u == coscelS?

Je(k) w/c &2

(4.22)

SQ a an
[_T_Ya Z. J(az (@) - 2.(a))Z, (a):IF1

represents the induced current for the "6-distribution" function.
Recalling the relation, R = (r2 + rf - 2rrLcos§)1/2, and thus

aR/ag = 1/R rrstw, one can write

1 6(g=g,) + sle+g))
2nr rL51n£°

F,(R) = alrir,)

(4.23)

where “"step" functionA (r; r+) is defined by

A(r;r+) =

{1 ifr <rer,
0 otherwise
(4.24)

In terms of the scale variables, (4.9), one can write (4.22) with (4.20) and

(4.23) as
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4 > - eiut ne? lonl 4 @ o5+ af s¥
i . Je(k) = 1Ee(k) 7 me Zar 2""‘|_ & ’/;:lau da dg —-—cosge
0 A o
F oF oF 1 -
: 1 ! b 1
- ’95(") [wy 3a k<u " da - uJ.aa,, )]zs(aL)Zs(a)FZ
*b L (4.25)
sQC 3;-2
[—(—)—a—z RS ALY -
_[- where
4
9 N
f F, = sla, ~a9 )ola -a)
b.
i’ . sle-g )vs(ere,)
: Fa = a, sing a{xix,) (4.26)
L L 0 -_
. (x+ =a t aL)
Defining velocity angle integrals,
A isy s
®, =/.'“dgcosge Zs(a)F2
. . F
_ is¥ 2
¥y = f decosge ~ 77, (a) —— (4.27)
he . he
: + _
; wgzk(sliw +1)
:‘.
: One can write (4.25) as,
. 2
: R - -fut .2 |a_| 2. . a
e Ne n' 1 s+l L

: Jo(k) = 1Eg(K) w/C mc 2nr Zna sza_: _/::Ia 9Ly
.
L -~
: : o (4.28)
{. Qs(k) [W‘Y &L - k(u" a - U‘La } (‘ ).
:
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(4.28)
- 0
® ZS(aO)CS
The integrals in (4.27) are calculated in Appendix to give,
v _ -1 2, ( )c £ 7 ) ® 4o 1 o0
s+l a s+l a s+1 *a s+l ra s+1
- a L L L
(4.29)
where
2cos¢
0 0
C. = —=——cos s¥ A& (x;x+)
s a sing
(4.30)
s? = g—-sin s¥ A (x;x+)
s a -

A
The remaining integrations in (4.28) are trivial with F; given by (4.26):

- -fot .2 |a | ®
oz e Ne n' 1 AS+]
Jo (k) = -1E, (k) w/C mc 2nr 2na :E: @

L §5-=
a02
) k 0 3 0 3 L ! 0
—_— e —lu, = -u - z (a )@
[ aaL ’6 " aaL L 3a°, ] Qg(k) s L' Ts
(4.31)
- — a,lZf(a)¥y, - a,) v
'Yo ng(k) L7s*L" " s s i S
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where the superscript o ensures that the quantities are evaluated at u = uﬁ
and u = uO. One can still trace back to the origins of the terms in (4.31);
the first temm is from E;-force (CMI). The second term is from ;:x g*(weibe1),

and the last term is due to the non-uniformity of (electron) plasma.

Lastly, one can observe that the induced current Sé(k) can be put into the fom

(4.32)

Je(k) = o(k)Ee(k)
where dynamical conductivity of the electron beam g(k) can be immediately
read off from (4.21) and (4.31).

Sﬁ(k): Source Term

Substituting (4.21) into (4.4) one can write

P (k) =ﬁu?, 2nudu 29R° dR” £ (uS wul, R%)P(K) (4.33)
where

- - 3 W ot 51 1 3

P (k) =i elutd quur dr 2, (Ja, )3, (k) (4.34)

and J,(k) is given by (4.31) with (4.29) and (4.30).
Define <A> for an A(x) as

*s
<A> 2

+1
ﬁxll(x)A(x) (4.35)
2n

and one can write (4.34) as

n N “LSE-w
(4.36)
2
k ) L !
oo & (e Pl o <o)
]

2
a Q
L c ! o+ 0=
- T[m aLZS(aL) <y > zs(aL) <¥ >]
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where

2

Ne
v —'2- (4.37)
mc

is the Budker parameter.

In the Appendix, we have calculated

<¢§> = -Z;(aL)ZE(ao) i
+_ 2 !

AREACHE (8(a,)) (4.38)
y
0_> _ ZI( 202 -~ SZ 2 !
\<¥§ = 2@ [27(a,) - (o- ;ﬁ')zs(ao)] X
. 0 3
]
and therefore ’
5 - 4y 1 <
Pk) = E (k) Tvoa—uzm, 1
aL2 2 2 "
2. 03 _ 03 ' 1
[“’ %, k(“u a, u'Laa°.. >]<Q s(k)Zs (aL))Zs(ao) g
(4.39) 1
27 5% 3 4 2 ' 2, \\/.'2 w

e loa s a) (Z5ag)) - u(zga)) (1 ()
S

L

e

A 4

- G—f;ého))lf .
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It is now straightforward to carry out the differentiation recalling that

Qf = wy, - ku - s and 2(x) + 1/x Z(x) +(a - s2/x?) Z (x) = 0 and

one can finally obtain

2
W
0 = £y LS ARERC TR
P (k) = E (k) =— — a° )2 (a
n 0 Ly ¥ e, ng(k) |“n|2 L's “'L'"s o
sQ " 2 !
+ € +1)[ac- 2 2> (Zi(ai)) Z‘z(ao)
Qs(k) a1
(4.40)
sq . & !
c L('Z oy a2
- —|Z_“(a%) Z_(a )>
Qg(k) o\S LY "s'o
+ »(zz(a" ))'(z'z(a ) - - )2 ))‘
2\"s'UL s ‘% @ 2 '“s\%
a
0
With (4.33) and (4.40), one can now solve (4.3) as
dE
) -agg-(o)
Eg(k) = 5= (4.41)
k -kn-Sn(k)
where
5. (k) = fau® 2mu%du® 2nR%R° £_(uS Lu,R0)S (K)
n = Jdu, Lo ql.ZnR olUy U n : )
4.42
d
an , g; - k2
» Q Q
e C ¢ (o
S (k) = Q, + Q, +Q
n SZ":“" ch)z(k) Ianlz 2 Qg(k) 1 0
(4.43)

—~
Le]
[N )
—
™
~—
m

w'Yo - SQC - kuou)
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where ,_j
_ 4mp 3L '2 2 1
Q, = Cx % 225 (@) (a,) ]
° X
v L s[ - 25 () 226, L 220 )(2a,) |
Ql'ch‘“'_?.' s\ fs% T A % LU s
0 a 0 :
-
(4.44) -4
0 -ﬂi(zz(a )>‘[(a_i)22(a ) '
0 CN Yo \'S L aL2 s' o :
:i
2
‘ - 2
* ’(Zsz(ao) (a B S_'2_>Zs(ao))]
a
0
]
-1
Lastly, the normalization constant Cy defined by (3.16) can be easily calculated {
)
to b
o be N 0
Cy = b3 Cy 1
-1
! (4.452) q
where ‘
(@, i 1)) 2
i) - AZ (o) 4.45p
Cy @ = _/r' 27r dr (Aizl(|an|r) + Aizl(lanlr)) ( ) i
i-1 ,
|42 i TR FTRAY- !
(%(la},lr) [(A,.zl(lanlr) + A,.zl(lanlr)) :
"
4 - (Aizo(la;|r) + Aizo(lunlr))(AiZZ(lanlr) + AiZZ(lan|r))] ril
2
ifal >0
n
2 i - i 2
Lwa,‘\m [(A23Claglr) + BT (Uagln)
"y

- (AZlla i) - BT, (agl ) (AZpllaglr) - Iizzq“:ulr))]ri 1
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Beam Spread Effect

Now let us consider the effect of beam spreads (velocity spread and guiding
center spreads) in (4.42). 1In practice, the velocity spreads are non-thermal;
mainly determined by the imperfact cathode surface, space charge effects, and {
electron optics from the acceleration stage to the beginning of the interaction
region. The spreads in guiding centers are mainly determined by the finite
size of electron emitting strips in addition to the same causes of velocity *

spread. The resulting distribution is close to the "water-bed" shape rather

than Maxwellian. The water-bed shape distribution function may be best

represented by a generalized Lorentzian distribution function: i
( i i (4.46)
F {x;8) = .
P (x-¥)2p + §2P J

where Cp is a normalization factor. When p =1, (4.46) reduces to the stan-

dard Lorentzian distribution and the higher value of p gives the flatter

shape. In the limit p~ «, (4.46) represents "box" distribution. Choosing d
X as uﬁ, u®@ or RO with an appropriate p and 6 , one can construct
realistic distribution functions. The beam spread effect of the type (4.42)

can be done analytically by contour integrals. d

From the structure of (4.42) and (4.43), one can immediately see that the

most sensitive one is the parallel velocity spread in uﬁ through the resonance

q
denominator, Qg =Wyq - kuﬁ -sQc. It is worth noting at this point that the
Laplace transformation variable k which was introduced by (4.1) is a complex
variable with sufficiently large negative in k to guarantee that the Laplace y

transformation (4.1) well-defined, and, therefore, the integral of (4.42) is

well-defined.
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In this paper, we will demonstrate the technique for the parallel velocity

spread function, 2
C_ au P N
fF (W) =F (W 5 au ) = P T -4
o' = T i = 0o — p 2p )
P (un -u, ) M Au” ‘
© (4.47) i
) o . ]
1 =f du, Foluy 5 auy ) o
where the normalization constanth is defined by i
j
Then, the integral (4.42) can be written as ]
: r ) 0 " 0
Sn(k) =./.du”_ Fp(u“ 5 AU )Sn(k;u,,) (4.48)
By writing (4.40) as 1
c BT ]
f ==L = - (4.49) ]
0 CZP +1 au, :!
One can identify that f, has poles at L
o
K = ein Zﬁil.: in the upper-half g-plane ,;
c: = e'i" E%il : in the lower-half z-plane (4.50) j
" 4
(k=0’1’o.o’ p-l) ?
]
Closing the contour in (4.47) by an upper-half circle or a lower-half circle, ]
¢
one can determine nomalization constant Cp by :
LYV 20{ = 1
o 75 M Tl (4.51a) ]
2z,
or, k=0
¢ 2 gy e 1 (4.51b)
n = .
P 2p p-1
z Ck* -33-
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From (A.5), one can immediately obtain

= o _ 2 '
<b> =7 (a )<C> = -Z (a;)Z.(a ) (A.15)
and from (A.9), (A.16)
.2 0 S R T
%.1” 7 aZi(a )<Co> + Zs-l(ao) P4 1 - a; <Cs-1” a Ss.1”

Using the Bessel equation, Z&(x) + 1/x Zé(x) + (a- R2/x2) Zo(x) = 0, and
the recursion formula, Zé(x) - /x Zp(x) = -2 Zg+1(x), it is straightforward

to simplify (A.16) as
_ 2 2 ' ~
o~ (2 + 2 tag)) 2(a) (.17)
Similarily,
<y > =(22(a ) - ;22 (a ))Zi(a )
s+l s 0 s+1 0’/ “sML (A. 18)

Then, from (A.17) and (A.18), one obtains

<¥> %(<\IJS 1> - a ¥4 )

[22tag) + 521 0) + T2y (o, ))]z (a,)

(A.19)
'2 - s2 2 '
- [226) - - kg
a
0
and -
<\ll:> = 15(<\,ps_1> + a<\ps+1>)
(2
|21 () - s+1 (a ))Z (a) (A.20)

2
- (Ze) e a

-

|
)
:
:

s O
Y W RPRIRIPRI

1
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Using the recursion formulas Zg(x) - €/x Zgo(x) = - aZgs1(x) and (A.7), it

is straightforward to obtain from (A.8),

¥,

= 0 3 0 s-1 0 _ 1 co0
s-1 aZ (a )Cg + Zs-l(ao)< Co-1 - o1 - 2 Ss-l) (.9)

aaL s-1 a,

Similarly,

- 0 30 s+l .0 1 .o (A.10)
Y41 T 'Zs(ao)cs + Zs+1(ao)<aaL Coe ¥ a, Cs+1 * a ss+1)

Radial Integration

Define a radial integration for a function A(x), that

“s+l

<A> = 95;- del(x)A(x) (A.11)

Then, noting that from x = (ag + aE - 2aoaL coswo)l/z. dx = 1/x aaL
sin ¥, d¢b = 3 sinSO dwb, one can write the radial integration of Cg

given by (A.4)

~s+l X4
o, _a (A.12)
<C.> & dy, 2cos£021(x)cos sV,
Applying Graf's addition theorem and (A.5), one obtains
s+l = et "
o, _a S y 1
<cs> = =5 ;,_: 25.4_1(31_)25.(ao)‘[dtlzo 2cos S wo cos swo
. (A.13)
= -Zs(ao)Z s(aL)
Similarly,
o ;s+1 Xy
<Ss> = 5 .[dwo Zsink;0 Zl(x)sin s¥,
- (A.14)

- 7(a,) - 2,(a)




where

| SPURPETE

2c0s¢E
s aLsingo

(@]
o
1]

T

A A s md

cos swo . A

(A.4)

]

o_ 2 _.
SS = a, sin swo

Using the above relations and Graf's addition theorem, one can easily show

that
~ isvy = ’
P = -"da COSE e Zs(a)F2
® -
> s -’
) s'=.°° Zgr 4'5(a )ZS,(x)CS, (A.5) :
-
= Zs(ao)cS ?ﬂ
Consider

n oF
- isy 2
Ye_q = J[;dg cosg e °7Z . (a) 37

(A.6)
m 3F,
=J[ de cosg ei(s'l)wzs_l(a) eV
-

From a = (x2 + aE - 2xa  as 2)1/2, da/aa| = siny and 1/a; 3a/d = sinv,

one obtains

N OO SO

wh % T w7
a  da " a 3

Using (A.7) and the Graf's addition theorem, one can write (A.6) as

- ~g! aC_, ' 1
Y51 ;. 2 g (a, )Zgr (x) (_i'+ %E s' T qss') (A.8)
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APPENDIX

Velocity Angle Integrations

For the velocity-angle distribution function

_ole-gy) + s(ere)

Fo = a sing A(x;x:?
where
x2+aﬁ-a§ )
= — v <
cosg, = Zxa, (o SE LT
define

C.,= h de cos eis't F
s! .l; § 2

2€0SE
aLsmg0

g
_ 1 .. is'ex
SS. = ./:“dg 3 Singe FZ

L

2 v
-a—S'inSEo A

(A.1)

(A.2)

Using Graf's addition theorem of Bessel function, one obtains the following

jdentities:

ASI
a

S 'zTam

= 0
21 ,5(a )2 (x)C., = Z (a))C

"2, )2 (s, ® 2 (a,)s

A-1
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The effect of velocity spreads and the spreads in the guiding center of

the beam are analyzed for generalized Lorentzian distribution which we
believe represents more accurately the realistic situations. We have

shown that the case of two waveguide modes and two beam modes applies to

a "cold" beam or a standard Lorentzian distribution. A more realistic

beam would require a generalized Lorentzian distribution which gives multiple
beam modes and, in the limiting case of a box-shaped distribution, the

number of beam modes will be infinitely many, all clustered on a branch

cut.

The loss due to a dielectric layer and an imperfectly conducting wall is

easy to take into account and is briefly mentioned in the text.
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VI. DISCUSSION

In this paper, we have presented a careful analysis of the gyrotron-type
amplifier. The theory is based upon linearized Vlasov-Maxwell equations
in a strong guiding magnetic field. The space charge effect is neglected
and possible absolute instabilities are assumed to be absent. Then the
theory can be cast into a two-dimensional (axial and radial direction)
boundary value problem in the case of azimuthal symmetry. The dynamical
growth of the electron states and the electromagnetic fields along the
interaction tube is analyzed by Laplace transformation rather than Fourier
transformation as often found in earlier works. Fourier analysis, in the
case of instabilities such as the amplifiers (also oscillators), is not
only ill-defined, but also makes no connection to the boundary conditions.
In contrast, Laplace transformation is well-defined, even in the case.of
strong instabilities, and also allows us to make a connection to the bound-

ary values. This way we can make definite determination of all the modes

(waveguide modes and beam modes) in terms of boundary values (input coupling

to the signal).

We have tried to carefully separate out TE,,-modes, noting exactly how TE
and TM modes could couple and how the different radial modes mix each
other. Analysis on the TM-modes will be presented elsewhere and the mixing
of the radial modes would be more interesting in the case of an azimuthally

non-symmetric situation such as the case of whistler modes. One important

technical feature of the analysis of a microwave device is that the electron

beam has a finite geometry which prevents the use of plasma theory for an

unbounded uniform plasma. The finite geometry of the electron beam introduces

an extra term which we have carefully identified. This term is important in

the determination of bandwidth, etc.

-41-
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The loss due to the dielectrics and the finite conductivity of the wall can
be easily taken into account by considering a complex dielectric constant
€= € + je", (Note that a conducting wall can also be considered as a

dielectric layer with a large imaginary dielectic constant.)
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can concentrate the z-dependency alone. With the radial function A(r) which

is a common factor, one obtains the power flow

. . dE_(2)
S, = - z%r- Re(m‘—/—C Ey(2) -%—)A(r) (5.10)

where Eg(z) is given by (5.6). Separating the power flow inward (Re k<0) and

outward (Re k>0), one obtains (5.11)

dE 2 % N*(Kk.) iksz N(k,)
A(r) ] -ik.z i i i
P (z) = - & -— (o) Re[ e i = k. e :

+ 8n w/c |dz E%%i>o D'*(kii Reki>0 i D ki

* * .
-ik;z N (ki) ik;2 N(ki)

dE 2
c_Alr
P - it @ RE[Z e m(%k_<o"ie DK, ]
1

Reki<0

In case 1) where the input signal is introduced at the gun end (z=0), the

gain for the tube length L is given by

(5.12)
G(dB) = 10 Tog g P+(L)/P+(o)
and in case 2) where the input signal is introduced from the output

pot, the gain is given by

G (dB) = 10 'Iog10 P+(L)/P_(L) (5.13)

In general, these two methods of input signal coupling give nearly the same
result when the loss is small, since the coupling of backward traveling waves
to the electron beam is small in most amplifier applications. However,

when a certain loss is introduced into the tube (either for stable operation
or due to the dielectric and wall loss), method 2) suffers a substantial

loss and method 1) would be preferred.
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It is also interesting to notice that, since (5.6) with (5.4) must satisfy

the boundary conditions at z=0, Eg|,=0 = 0 and dEg/dz|;<9 = dEp/dz (0), one

obtains sum rules.

[ g

)

b

b,

E 12=1 D (k;) "0

4 N(ki)
(5.8)

4 N(ki)

T 0Ty T
%- Power Flow and Gain
:
‘. Having detemmined the fields as a function of z by (5.6) and (5.7), it is ‘
{ easy to calculate the gain of the amplifier. The gain is defined by the
:}j ratio of the output power to the input power and tnus requires calculation of
EI' the power flow into the system (backward wave) and out of the system (forward P
g wave).

Depending on the method of introduction of input signal, we consider
two different cases: 1) the input signal is introduced at the gun end ﬂ

(z=0) and, 2) the signal is introduced from the output port (z=L) through a

circulator. i

The first step to calculate the gain is to calculate the power flow inward

and the one outward. Consider the time averaged Poynting vector

= E_ -.*

S g Re(E* x H) (5.9) ﬂ
for the fields given by (5.6) and (5.7). For calculating the gain, we are

interested in the ratio of power flows as a function of z and therefore one ‘
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and QJ = Wy - ku} - s with u}) is replaced by u + iAu, according to
(4.54). Then, Eb(k), given by (5.3), possesses poles given by roots of the

dispersion relation

]
o

D(k,i) (5.5)

which is a quartic function giving four roots and Eb(k) is given by (5.2)
as

dE 4 iN(K;)
B i .
“@ e PR 1 (¥ (5-6)

ik,
2

Ee(Z)

Clearly, Eo(z) is a superposition of four modes: two empty waveguide modes
moving to the forward and backward, and two beam modes. If there is no
velocity spread ("cold" beam), D(k) is a quartic function with real coeffi-
cients giving two complex conjugate roots, representing one growing mode

(kj with Im k; < 0) and one decaying mode (k:). With beam spread, the
coefficients of D(k) are no longer real and therefore the complex solutions need
not be complex conjugates of each other. Physically one expects that the com-
plexity of the coefficients of D(k) through the shift in uﬁ = Uﬁ + Ay,

tends to reduce the growing part (Im kj < 0) more. Once again, we emphasize

that the two-foldness of beam modes (in addition to the two waveguide modes) in

(5.6) is true only for the "cold" beam or standard Lorentzian distribution.

Having determined Ey(z) as (5.6), the other non-vanishing fields are given
by (3.12) as

dEe(z)

1oH(2) = - — (5.7)

%-Hz(z) = |an|Ee(z)
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Fields
Applying the Bromwitz formula (5.1), 1
Ee (2) =ZRes(e1 kz iEe (k))

i

and therefore, the problem is essentially reduced to find poles of Ee(k). {

(5.2)

k=ki:p01es

From (4.41), (4.53) and (4.43), it is clear that there are, in general, an

LI 2 b 2han 2

infinite number of poles in Ee(k) when all the harmonics in (4.43) are

‘II included. In practice, however, for a reasonably strong magnetic field, {
[

. different harmonics are fairly well-separated and the parameter can be

]

chosen to tune to only one of the harmonic modes. For a given harmonic

o
{' mode, there are 2 + 2p poles in Ea(k) with generalized Lorentzian distribu- 1
E B tion of order p in uﬂ. Two poles represent two empty waveguide modes 5
E A while 2p-poles represent beam modes. In the limit p —> o, that is for the ;
3.. “box" distribution, the infinite number of these poles is compactly distributed ‘

between uﬁ + Auy forming a branch cut. Only when p=1 (the standard Lorentzian

distribution) are there four modes, as in the "cold" beam case.

For simplicity, from now on, we will consider the case p=1 for a specific

harmonic mode s. In this case Ea(k), given by (4.41), can be written as a

—~——r—r—r e

e quotient of two polynomial functions, 4
E (k) = dEe( Nik (5.3)
E Eg(k) = - 73— (o) 5%;}
o where . 4
, 2
f - N(K) = o2 (k%ﬁ
2 22 (k) n°2(k)
. D(k) = Qg (k)(;z-k;) - (%2 + Q1 ;c + Q0 -552—- (5.4) w
: c
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V.  INVERSE LAPLACE TRANSFORMATION

Let us now consider the inversion of the Laplace transformation of Eb(k)
given by (4.4) to obtain the field as a function of 2z, Ee(z). The inverse

Laplace transformation (4.1) is given by the Bromwitz inversion formula:

=iC+e . -
F(z) = -127 dk e K2 F(k)
-iCee
o1 ikz .=
= 5 fcdk e' "% iF(k) (5.1)

=:E:Res eIkz iE(k)
i k=ki:po1es

}
b

° Where the contour integral is done along C as shown in Figure 5.1. \
L.
' p
;; g
; Imk ]
© v%
c' k. :
3 :
; ) :
Y poles ‘
] * * Rek
/ .
‘F F

c -ic

'. Figure 5.1 The contour integral for the inverse Laplace transformmation. i

: c must be chosen to be large enough to include all the poles in Eb(k). 1
.
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In termms of /-variable, (4.48) can be written as

- -]

C
- _ 0 ~ L=
Splk) = au [md; f_p%sn(k’ u, *zeu, ) (4.52)

Recalling that Im k<o, one can show that the function S, given by (4.43) has
a pole in the upper t-plane if w>swe and in the lower f-plane if wlswc.. The
contour in (4.52) can be closed to exclude this pole so that only the poles

in the distribution function contribute to (4.52). Then, using the nomali-

zation constant Cp given by (4.51a) or (4.51b) accordingly, one obtains

- p-1 4 . - * p-1
s (k) =23 Sylks uy +¢g 8u )T g

4
n k ™n
= =0
k=0 k (4.53a)
ifw >Swe, and
- p-1 . _ p-1
S,(k) = Eio gy Splks u, +gau ) Eio Ly (4.53b)

if wlsw,, where ¢ and tf are given by (4.50). In the case of the standard
Lorentzian distribution for p = 1, £, = i and therefore, one obtains very

simple results:

- Sn(k; l—f“ - 'iAuII ) ifow> Sw,

s (k) =1. - (4.54)
n S (ks U, +1iau, ) fw< s
In other words, for standard Lorentzian distribution, the effect of spread in
parallel velocity is merely shifting the center velocity to the complex one
as (4.54). For generalized Lorentzian distribution p > 1, the effect is the

average of the shifts by ¢ Au, or C:Au”,

K
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I.  INTRODUCTION

A gyrotron is a microwave generating or amplifying device utilizing transverse
energy of an electron beam gyrating in a strong dc-magnetic field. The

basic mechanism responsible for this is the negative mass instability of
rotating electrons resonantly interacting with the RF field. Due to the

fact that the relativistic cyclotron frequency, we =Qc/Y Q¢ = eBy/mc),

is inversely proportional to the total energy of an electron, the rotational
motion (angular velocity) decelerates when it gains energy and accelerates
when it loses energy, resulting in azimuthal bunching in phase space. This
azimuthal bunching induces a strongly enhanced coherent radiation (typically

1011-12 times over the incoherent radiation level).

A general analysis shows that there are three types of instability driving
forces. The first one is a transverse electric force directly modulating the
rotational motion of an electron and responsible for the familiar cyclotron
maser instability (CMI). This is proportional to the transverse velocity
gradient of the electron beam distribution function and is dominant in the

fast wave region. The second force is a magnetic ponderomotive force due to

-> hd o d
a transverse magnetic field (linear combination of v, x H; and 7; x H;) and

is responsible for the Weibel instability. This force is effective only when
the electron distribution function has an anisotropy in the velocity space.

In a gyrotron, this effect usually competes with the CMI and becomes dominant
in the slow wave region. The third kind 1s an axial electric force (therefore,
not present for TE-modes) and is proportional to the axial velocity gradient
of the electron distribution function. Unlike the CMI and Weibel which are
proportional to vf. this is the only instability driving force which survives
fn the 1imit v, -0, leading to a type of conventional traveling wave tube

with dielectric slow wave structure (or Cerenkov radiation device).




In addition to all these major instability driving forces, a careful analysis

shows additional terms due to the inhomogeneity of the electron plasma for an
electron beam with finite geometry. This geometric term gives a weak contri- 1
bution to a case tuned to the top of resonance but it affects the detuning

factor and bandwidth.

Previously, we have analyzed a gyrotron amplifier for the TE,,-mode. Here we
report a similar analysis for the TMj,-mode. In many respects, the TMgy,-mode
analysis (with Ez, Ep, Hg) is complementary to the one for the TEyp-mode
(with Hz, Hp, EO)' However, one major difference in the analysis for the
TMgh-mode is that one must solve a coupled equation for E; and E. since there
are two sources (Jz and Jp), both strongly coupled to E; and Epr. This
requires more care in projecting out the n-th radial mode radiation from a
‘radially finite source which, in principle, could radiate in all radial
modes. For this purpose we have derived an orthonormality relation in ' 1
Appendix A which is used in projecting out the desired radial mode. The key

factor which allows us to concentrate on a single radial mode at a time is

that the radial mode dispersion relation is usually well-separated and only {
one of these modes is resonantly interacting with the electron beam in a

controlled device. Bearing this difference in mind, we can proceed with the

analysis much in parallel to the one for the TEgp-mode. In Section II, {
we have derived, from Maxwell equations, a coupled wave equation for E, and

Er with source terms J; and Jp. Using the properties of radial eigen-

mode functions derived in Appendix A, we project out the n-th radial mode. {
As we have emphasized in the TEgy,-mode analysis we use Laplace transformation

which is suitable for an analysis dealing with instabilities. The Laplace
transformation correctly accounts for the boundary values at the input end (

so that this analysis includes the insertion loss in a natural way.

-
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In Section III, we calculate the source terms from a linearized Vlasov
equation. The algebra is quite involved, mostly due to the cylindrical
geometry we are interested in, but is rather straightforward, and freely uses
Graf's addition theorem for Bessel functions. Appendix B is devoted to some
of the integrals used in this section. Axial velocity spread is included

in the source terms. A detailed discussion of this is included in the

Previous analysis for the TE,p-mode interaction.

In Section IV, we combine the results from Sections II and III to derive a
complex dispersion relation and determine the fields as a function of z in
terms of the input boundary values. This is done easily by an inverse Laplace
transformation which, essentially, picks up pole contributions in the Laplace
transformed fields. The complex dispersion relation leads to four poles (two
beam and two waveguide modes), and the residue at each pole determines the
relative strength of each mode. As a result, the present analysis allows us
to determine completely the fields in terms of input boundary values. Thus,
one can immediately calculate the gain vs. frequency for an amplifier

application.

Some numerical examples are shown in Section V. These sample results (not
yet optimized) show that the TMgn-mode interaction is comparable to the one

for the TEy,-mode, at Teast in a slow wave region.
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II. MAXWELL'S EQUATIONS

Consider an annular electron beam introduced along a strong uniform guiding
magnetic field into the innermost (vacuum) region of a waveguide loaded with

' multilayer, concentric dielectric slow wave structure as shown in Fig. 1.

o

Rt B
Tos

As we are interested in an amplifier theory for TMgn modes, we assume that

the system is in a stationary state (with time dependence ~e-iwt) and is

e

'I.

azimuthally symmetric (3/86 = 0). However, since the EM fields can grow or
decay along the direction of propagation due to the interaction with the
electron beam, one must leave the z-dependency to be determined consistently
by the coupled Maxwell-Vlasov equations. Also, due to the presence of a
radially localized source (the electron beam) which, in principle, can radiate
‘ into all radial modes, one cannot assume that the fields are given by a

single radial eigenmode in the waveguide. Since the radial eigenmodes form

a complete orthonormal set, one can certainly expand any radial function

o (satisfying the waveguide boundary conditions) in terms of these. Therefore
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one can write a general ansatz as, in the i-th dielectric region,

Eiizr,z,t)

1]

e'i“’t;fz’n(z) eijz (r)

Eﬁilr,z,t) = i e'i‘*’tgn;fr’n(z) eﬁ’,), (r) (2.1)
Héilr,z,t) = i e'ithWG,n(z) hgiz (r)
n

(1)
r,n

i j
where the radial eigenmodes ezfn)(r), e (r), hé’g (r) and their properties

are given in Appendix A. Substituting this ansatz into Maxwell's equations,

-

VxE =ipw/ H and V x H = -ie w/c £+ 4r/c 3, one obtains

Cs (1) o (1) = (1)
;(-1 Er,n e,-’n + Ez,n ez’n - M4 w/c Hg’n ho’n) =0 (2.23)
X (1) = (i) -

2 (=g hg - es w/e Eo | ep ) = dn/c ety (2.2b)

n

= (i = i) . -

:E:(Hg’n 1/r (rhe’z)' + €5 w/c Ez,n ei,n) = -1 4n/c e‘wtdz (2.2¢)

n

where . = d/dz and ' = d/dr. Note that the source terms Jp and J, are localized

only in the innermost vacuum region (i = 1). This is why one needs all the

radial modes on the left-hand side of (2.2b) and (2.2c).

In practice the radial eigenmodes are fairly well separated, therefore,
one can tune the system so that the electron beam interacts resonantly with
only one specific radial eigenmode (p'). One would like to project out the
n'-th radial eigenmode from (2.2). This can be done easily by using the
orthogonality relation (A.19) derived in Appendix A. First, one writes the

radial fields in (2.2) in terms of hg n using the relations given by (A.3);
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) sl

‘i w/c e = k"’n g,n J
<y 1 N 2 .

€; w/c e§:3 = kfzg hg:g (2.3)
. . 2 N

(e (rnboyy = 2D R0

to cast (2.2) into

— — (i)2 (i) = — (1)
2 (Ez,n - Fron) kin hgyn =Zn:(’ Er,n * Honk,,n) k,,n hg,n  (2.42) ﬁ
n
> H, +E. _k ) pli) L ar/c e'wty (2.4b)
= ! é,n rsn “u,n a,n r °
T o (1) ; jwt )I
:E:(-l Er,n + Ho,n k"’n) W hg’n = - i 4n/c e ™, (2.4c¢)
n
¥
. (i) . ri
Now we multiply (2.4) by hg n' /ej, integrate J. rdr and sum over all
ri-1
dielectric regions. Using the orthonormality (A.19) and (A.20), one obtains
»
2 .
ky,n' Ezgnt =1 Ep g k, o *+Hgp w/c (2.5a)
L) r 3 J
i H E. ok =-4 fwt /¢ Lar n$1) 2.5b
i Hgn *+Eppk, o =-4dr/ce 1/Chr ) o rdr hg v Jp (2.5D)
, = _— . jwt V) rl (i) *
1E. v +Hgpk, p = -idn/c el 1/C0 Jordrhg oo 0y /k, v (2.5¢) ,
N ri ()2
Cp = X J' rdr h €i),
(Ch A L g,n /€i)
-
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where we have used the fact that the source terms Jp and J, are nonvanishing
only in the innermost region (vacuum, €] = uj =1). By integration by parts on
the right-hand side of (2.5¢c) and using (A.3b) and (A.3c), one can write

(2.5) in a more transparent form as (dropping the subscript n' from now on),

2 :
kK, E, =1 E, k, + Hyw?/c? | (2.6a)
i By(z) + k Ep(z) = - Pr(2) (2.6b)
i B (z) + k, Fg(z) = - P,(2) (2.6¢)

(2.7)
P,(z) =i 4r/c elwt w(c/kn J—Z/Cn
and
- ri
Jr (Z)Ef rdr epdp
0
— r1
Jz(z)zf rdr ezJ; (2.8)
o [}
Noeri i)y (i
(Ch= 2 rdr e,(.'n) hg n)).
j=1 7 ri-1 '

The physical meaning of the source terms Pp(z) and P,(z) is clearly that they
are proportional to the work done by the induced current interacting with EM

fields which are normalized to the total power flow through the waveguide.

The set of differential equations (2.6) can be converted into a set of

algebraic equations by a Laplace transformation defined by

-7 -
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?(k)sjw dz e-1kZ F(z)
0

F(k) = ik F(k) - F(o)

(2.9)

with Im k sufficiently large and negative to make the transformation integral
(2.9) well-defined even in the case of F(z) exponentially increasing. Note
that for a system involving an instability, the usual Fourier transformation
is not well defined. A bonus of using the Laplace transformation rather
than the Fourier transformation in the present case is that it completely
determines the growth of the field from the boundary values at the input

end.

Applying (2.9) to (2.6), one obtains
- < (1) 5 = (1) (1)
kB0 == Erpn Kk o/ Tk al? + g 0?/c?/Ik 1% = Ep(0) K, 0/ 1Ky ol

-k Er,n + k",n ﬁo’n = Z/C/Cn gz + i Fr’n(O) (2.10)

k"’n Er’n -k ﬁe,n = Z/C/Cn Wr + 1 Fe,n(O)o




II1. VLASOV EQUATION (LINEARIZED)

The perturbed electron distribution function f; (from its equilibrium state f;)

under the influence of EM fields is given by

t —> - —
f, (X,U,t) = e/m I dt' (E' +u'/cY x H') - vy ify » (3.1)
t-z/v,

The integration path is over the unperturbed characteristics -- a particle

>
trajectory in a uniform magnetic field as shown in Fig. 3.1. *

Figure 3.1. 0 is the center of waveguide; G is the guiding
center of an electron; E' is the position
of the electron at t'; r = u;/Q¢ is Larmor
radius; and we = Nc/ Y (Rc = eBo/mg) is
relativistic cyclotron frequency.

The primed quantities represent the values at t' and the position given by

z' =z+v (t'-t)ando' =9 +w(t' - t). Note the relation between

angles in Fig. 3.1: &' =.7/2 - (¢' - 9'), ¥' = 7/2 + (' -O@) and X' =@-0' .

A realistic equilibrium beam function f, can be constructed from three
invariants, u , u; (0 = p/m = VY is a momentum variable) and the guiding §
center radius R = (r'2 + rE -2r'r cos&')l/z. In terms of the angles i

)

shown in Fig. 3.1, f] with ™M - field components (Ez, Ep, Hg) can be written

as




Ty, ' T TN T eET e T e T e LT T T Ty Ty T T

t
f1 = e/m Jp dt' tEi 8fg/ou, + [Ep 8fp/8u + Hy (ul/cv 9fg/0u
t-z/v,

- u jcy 8fp/ou;)] sink' + (Eh - Hy u /cv) lfa 8f/oR sinx'],(3.2)

Note that the last term in (3.2) is essentially due to an inhomogeneous plasma
such as annular electron beam. Substituting the ansatz (2.1) and noting
that we have assumed that the electron beam is only in the innermost vacuum

region of the waveguide, one obtains

. z . ' - i
fl = e-wt e/mf dZ'/V'; eM(Z-Z)/VuZ th,n(Z') 3f0/auu ZO (lkf1r)‘|r')
(1] n ’

- [Er,n(2") ku’n/|kf:zi 9fg/ouy + Hg n(z') w/c/lkszl (uy/cy afy/au,
QN
- u,/evafo/ou )] 21|k  nlr') i siné

- [Epn(2') k“,n/lkflgl - Fg.n(z') w/c/lkl(:,),l u./c¥] 1/2¢ 3Fo/aR 7

(i) l

(Jky,nlr*) i sin X' (3.3)

An immediate difficulty in carrying out the integral is due to the complexity
of 2'-dependency introduced by the arguments of the Bessel functions. This
can be easily overcome by exploiting Graf's addition theorem for Bessel

functions which allows us to expand in harmonic functions.

Consider a triangle shown in Fig. 3.2, with scale variables defined by

i i i
x' = |k£,,),|r', aL = IkE’r),IrL, a= IkE,,),IR
(1)2 (i) 2

and ﬁ =k, ,n/lk;,n|l . Graf's addition theorem reads

- 10 -
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z!(xl) ei!§~. = /':l' eil'w' 22,+i(aL) th(a)
27=-
(3.4)
- ]
ZI(X.) ei!x‘ = Z ?(‘Q. e'il'll)' Zz'+ !(a) Z!-(aL),
£'='w

Figure 3.2. Triangles for Graf's addition theorem of
Bessel function at various stages of
integration,

Using (3.4) with Z_,(x) = (-Q)IZI(x), one obtains the desired harmonic

expansion as

Zo(x') = 2K &1V 2(a ) 24(a)

$=-00

a0
Zy(x') 1 sink "' = Z Ts+leisy’ s/aL Zs(aL) Z,(a)

w

[ -]
Z;(x') i sinx' = ZQS‘”eisw' Zs(aL) s/a Z(a)
$=-0

(¥' =9 + we (2'-2)/v,)

and therefore, suppressing the obvious index n for notational simplicity,

=11 -
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first harmonic (s=1). Instead, the zeroth harmonic s=0, which, of course,
requires a steeper beam line to cross the dispersion line, gives a gain with
narrow bandwidth. This is Cerenkov radiation from the axial energy of an
electron beam rather than transverse energy as in the gyrotron. Certainly a
more careful comparison study is necessary to compare the performance of a
TMon-mode amplifier to a TEyy-mode amplifier. However, the indication

so far is that the TM,, mode amplifier seems to be at least comparable to

the TEyp-mode amplifier.
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V. RESULTS AND DISCUSSION

Based upon the analysis discussed so far, we have developed a computer code

to calculate and graph gain vs. frequency for a variety of parameters.

Some sample cases (not yet optimized) are shown in Figures 5.1 through 5.5.
For all these figures, we have considered a cylindrical waveguide with two
dielectric layers surrounding the central vacuum region with designated
parameters: r] = 1,55 ¢m, rp = 1.75 cm, r3 = 2.033 ¢cm and €1 = 1.0, €2

= 4,6, €3 = 19. (This particular choice of a waveguide is for comparison

to the Yale TEy, mode experiment.) The annular electron beam is assumed

to carry a current I = 5.2 Amp with a guiding center radius R = 0.72 cm in a
magnetic field corresponding to the cyclotron frequency wc/c = 0.75. All these
examples show the first harmonic interaction (s=1) with the TMy,-mode for
different velocities and the axial velocity spreads. For example, Figure 5.1
shows the gain vs. frequency for various axial velocities v /c = 0,17 +

(n-1) x 0.005 (n=1, ..., 4) witha =v,;/v =2and v = 0. Compared to

the similar results for the TE,,-mode, the gain is comparable. Figure 5.2 shows
the same case except the velocity spread (Av ) is now 2%. It is obvious

that the slow wave amplifier is sensitive to the axial velocity spread,
particularly at higher frequencies (thus large k,). The next graph (Fig. 5.3)
shows the same case as Figure 5.2 except with slightly higher axial velocities
given by v, = 0.185 + (n-1) x 0.005 (n=1, ..., 4). The gains are slightly
improved with smaller bandwidths. Apparently there seems to be a trade-off
between gain and bandwidth. Figure 5.4 shows the same case as Figure 5.3
except with a higher velocity spread Av, = 4%. The last figure (Figure 5.5)

is similar to Figure 5.1 except that a is 1 now. The gain is a very sensitive
function of the transverse velocity. This is a general characteristic of any

gyrotron device. In the limit a -0, we do not get any positive gain for the
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Applying (4.9) to (4.6) and noting that there are four poles corresponding

to the four roots in the complex dispersion relation
d(kj) = o,

one obtains

(4.10)

(4.11)

E, 4 , Ne (ki
T LS kg (f( 1)>/d'(k,-)
Ho(2) i=1 Ng (ki)
where
N k ku - S 1 S - S k" - S
(k) = - §§(k) t-H-e(O)< 12>+ E.(o0) (( + S10) 20( 12)
Ne(k) kK + 812 (1 + 510) + SZO(k + 511) .

(4.12)

Note that the relative field amplitude of each of the four possible modes is

completely determined by the residues at the poles as a function of boundary

values (Hy(0) and Ep(0)).

Having determined the fields as functions of z, one can immediately calculate

the gain as a function of interaction length rL from the power flow compared

to the input,
6(dB) = 10 log)g (Sz(L)/Sz(0))
where
52(L)/52(0) = Re (Er(2)F3(2))/Re (Er(0)Fg(0))[zuL
= Re (:_‘eikiL H.(kq)/d" (ky)) (*12 e TKIL N (k)7 (k1))/

Re (%‘ Ne(ki)/d' (ki) (} N3(ki)/d' (ki))*

(4.13)

taking the summation over only Re (ki) > o for the forward gain, and Re (ki) < o

for the backward gain.
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and

A —
$11522 - S12521 = (2/¢,)2 kag ck,/1k, 12 [8§/as% wP/c?/ 1k, |2 sack,/(k,|?
- 55 kevy/ |k 12 w/c/ac] .

It is important to note that one can rationalize (4.6) by multiplying by

ﬁg(k) in the denominator and numerator. Then the denominator
d(k) = (k) det(D(k) (4.8)
is a quartic polynomial in k.

The fields as functions of z can be immediately obtained from (4.6) by ]
inverting the Laplace transformation. The Brownwitz inversion formula for !

the Laplace transformation (2.9) reads

LRI

-jC+o® -
F(z) = 1/21rj dk elkz F(k) ?
~jc-
= 1/21n'fdk elkz § F(k) (4.9)

=:E: Res (eikZ j F(k))
i k=kj : poles
where sufficiently large positive ¢ guarantees that all the pole contribu-

tions in the contour integral shown‘in Fig. 4.1 are included.
4 Imk

} Rek
- —_—k \ >

L o x

.te
Figure 4.1, Contour integral for (4.9).
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N
n

Ao = - 52 k 71k 12 (w/c T, - keYy)
By = &/ Kk, keYp/lk |2, B, = £/ w/c/lky|? (wyy - s2c)
By = £/ k,c¥,/lk,|? (4.4)

s =wYy - SQ¢ - kU“) .

Substituting (4.2) into (4.1) one obtains

k+3S11 -k, + 512\ [Er — 0 _ 1+ 510
~ | = iHg(o) +iEr(0)
-k - S21 k + S22 Ho 1 S20

(4.5)

which can be immediately soluable by matrix inversion as

Fr) 1/det (B(k))- |iFig(o) (k" ) Slz)
~ = e 1 0
Ho(k) ?

_ (1 + S10) + Sgo
+ iEp(0)
(1 +510) + S20

(ky = S12)
(4.6)
(k + 511)

where

~ k +3511 -k, + 312
det (D(k))= (4.7)
-k, * 521 -k + 522

= (k2 - k2) + k(Syy + Spp) *+ k,(S12 + S21) + Sy15p7 - $12521
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IV. DISPERSION RELATION AND GAIN

Let us go back to Maxwell equations (2.10) and write them in a matrix form as

~

K - Ep

k AR . 0 - <1
= (2 i + i 4,
S &,k F (/c)/c" Wr * 1 Helo) 1 tEelo) o/ , -1

with the source terms calculated in the previous section, (3.27) with

vy v r v ow v

T e ey

L (3.29). In the source terms, all the possible radial and temporal harmonics
| of TMgp-mode are included so far. However, each radial and temporal 1
| harmonic is weighted with resonance factor l/ﬁg and 1/%g with
. Qg = wY- K, ,n 'J" - sQ¢ and, in practice, one can tune to only one of them l
. . .‘
f since the radial modes and temporal harmonics are fairly well separated. f
% Therefore, considering only this resonant mode term in the source term and ]
E. using the relation (2. ), one can write (3.27) as i
! Wz si1 sz [Er) - S10
1 -2/cfen | )= ~ | +1Ep(o) (4.2)
© Wp S21 S22/ \H 520
|
: where
: A AL
' o S11= 2/Cqy k (u® Ay + By) S12 =- 2/Cqp k (ud Az + Bp)
r
: _ 2
: Sp1= 2/Cq Sk, /1K 12 Ay Sy == 2/, sack, Ik, |2 Ay (4.3)
: A
. S10= 2/Cy k (uS Ay +B,) Sy =~ 2/C, sqck,/|ky |2 Ay
and
. A = 502 (Rre? - KB) kv /1K, 12 - &Mk, wicfk |2

-, K cvo/me
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which is the desired result for a "cold" beam with 6 - function guiding center
distribution. Beam spread effects should be included at this stage, according
to (3.11). This has been discussed in detail in Ref. 1, and here we quote

the result for the most important velocity spread effect in u, for a Lorenzian

distribution
fo(u®) = 1/ aus/((uo-u,)% + @aus)?) . | (3.28)

We have shown in Ref. 1 that the result of this velocity spread effect is to

merely replace u? in (3.27) by

u® - U, - iAu, sin w-2./7). (3.29)
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|
The remaining integration in (3.24) with 31 given by (3.17) can be done
g trivially by integration by parts,
W, (k) A~
P - = - Ne/m 2. [22(a,) [- k E, 0/0us
Nr(k) n,s
+ s/aE (Er k,/lk,| 3/au} + ﬁg aﬂc/ﬂkl| (uf/evg 3/3uy = ul/cyg 3/3uf))]
p
+ s/ay (23(a,)) (E, k,/Ik | - Hg w/c/lk | (us/evy) |k |/ac]
~ku?
f 72(a°) /2 (k) . (3.25)
P Defining
- 2/m-2 2 2
£, = Ne“/mc % Zs(at) Zs(ao) (3.26)
b ¢, = Ne?/mcy, [Zg(af) s/a, (22(a )" + s/ai‘_’ (Zi(al‘_’)' Zg(ao)].
one can further reduce (3.25) to
4 ~ A
/e | - 53 o) L= t1ag? (- K E, (wre ug - key)
\ W.(k) ] n,s U\ sock /[k,]
| + (E} k, - ﬁb k) sQ¢ w/c/lkﬂ2
+ /Mg 1/ (Er k,cyo - Hgw/c u2)]
A
-k A ~ - ,
{ + £1/a3(k) (-k E ¥y + Fg sacw/c/[ki]?) .
()
(3.27)
|
-17 -
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Defining the radial integrals as

Iy As X1 Il(x))
= T z
) =¥ J[O dx o(x)( L)

(3.21)
T X I3(x)
3 EQS/ZTI'f ! dx Zl(x)( )
Ty 0 I4(x)
one can write (3.20) with (3.19) as
Wz (k)
2 o
= NeZ/m fdu,,du u, fusfac(k) Z.(a )
w,.(k) 65_.; 171 J./S SV
(3.22)
A ~ o o~
( ku, (F4 11 - F1 I2) )
° A - ~ _
(-k k /]k Ju;) (Fy T3 + F1 Tg).

The radial integrals (3.21) are carried out in Appendix C giving very simple

results,
T, = 2.(a )22(a.) T,=ks/a T
1 s 9 /s %/ 3 L 1 (3.23)
- - A —
Tp = - I5(a)) s/ag (24(a,))'s Ty =k s/a Ty
and one obtains
Wy () k
2 2 =Ky, 2
= - Ne“/m fdu"du u, Jus/ (k) ( )Z (a,)
. (k) ;%; L Y /uj/iig s k“/lkllz s\
(Fy 22(a,) + Fy s/a, (28(ay)") (3.24)

where Fy and Fy are given by (3.16).

- 16 -

Lo . . . . N S R ..
U . PN . N R < Lt N T e ot .
el e e e e W s A PR RV RIS DT Ui S S T . SR P — s




(»

ri

(o

[Y)

(o

(9

LA A e aen g Lo ——y " s "
T Cihd [ AN SN AL i P B g o T e T T ARG A e Aate Sinss Shats S St e Sete e dmas B o g

91 (u,, u)=6(u, - u?) (u, - uj)

92 (&) = (8(6-¢0) + 6(&+éo))/al_sin§ o 8(r) . (3.17)
Defining the following phase angle integrals as yﬁ
A
I1(x) . Z5(a) 92 -
Efdg els¥ . A B
I2(x) s/a Zs{a) agz/ea B
(3.18) %
13(x) [1s(a) 82 ]
Efdg 1/i sing eis® A ;
I4(x) s/a Zg(a) 39p/9a ,

- 4
one can write (3.15) as ;!
Jz(k) ot o2 2, fs+l 5
. = " WL Nel/m Z |k1|/(2’f) rk ﬁu,,dul ul/ui’/Qs(k) Z.(a ) ]
J (k) n,s L y
-iu, (Fy I1(x) - 1 Ia(x) ]
(3.19) s
uy (Fy I3(x) - F1 I4(x)) /. 3
{

The integrals in (3.18) are calculated in Appendix B and the remaining
integral in (3.19) is trivial, resulting in a rather complicated expression f
for the induced currents. However, what is interesting to us is the work ;4
.
done by fields on the induced current, given the source terms in the Maxwell ]
Y
equations (2.10). =
X
Nz(k) f'l i ez(l)(r‘) e1Wt z(k) _~
- J' 2rrdr ) ot (3.20) R
W.(k) ) e.\/(r) e Jp(k) . *j

v

P .
.
LY Uy G B Uy W
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With R = (r2 + rf - 2rrL cos ¢ )1/2, one can consider g,(R) as a function

determining the angle distribution and given by

g2(R) = 1/2nr (8(£-£,) + 6(§+§o))/rL sin £, A(r) (3.13)

where cos oss(rz + rﬁ - R%)/erL (see Fig. 3.2) and

1 ifr_.{r<r,
Ar) =
o otherwise (3.14)

rL =Ry zxr .
(t [o] L)

Putting all of this into (3.10) and understanding that the beam spread
effects (both in velocities and guiding center) will be taken into account

later (as dictated by (3.11)), one obtains

—~

Jz(n) .
% = -1 emiwt NeZ/m D [k, |/(2m)2r kS* jdu" du, d& u /ugfeg (k)
J.(k) n,s

ull
e'iSlP( )'Zs(a )
uj anE L
(Fu(k) Zg(a) 97 - F1(k) s/a Zs(a) 8G2/0a) (3.15)
where
~ . A~ ~ A e
Fu(k) = kE; 291/0u, - s/a [Ep k, /1K, | a81/0u; + Fg wic/IKk |
(u, /ey 31/80“ -u, /fcY aﬁl/aul)]

Frik)= Qu(Ep k /I, | - Fg w/es[k | u,/ev) |k |/ (3.16)

-which represents the part for a homogeneous plasma and an inhomogeneity,

respectively, and

- 14 -
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The induced currents (Laplace transformed) are given by
~z(k) u,/Y ~
(~ )E- Ne /:13u AR (3.10)
Jp(k) u /7Y sing

where N is number of electrons per unit length.

In order to carry out the integral over momentum space, we need to know a
more specific form of the beam function fg. This can be done without making
any further assumption, other than f, being an arbitrary function of u , u;

and R, by invoking the following identity:
fo(u", u;, R)= fdu® 27 uf du} 27 R°dR® f, (u®, uj, R®) £ (u,s u;, R)

with

?o (u,» u, R)=g1 (u,, u;) 92(R)
g1 (u,, u)=26(u, - u®) 1/2mu} 6(u; - ug) . (3.12)

g7 (R)=1/2mR° &(R - R°).

Note that ?6 represents a "cold" beam function with &- function guiding
center distribution and is normalized to be one electron per unit length.
Equation (3.11) allows us to include the beam spread effects both in the
velocity and the gquiding center at the end of the calculation and to
concentrate for the moment on the &- function type of beam function ?6

without losing any generality.
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f) = e~lwt e/m Z L5+l evswf dz' /v, el w-sw.)(2'-2)/v,
n,s o
- A
{Ez(z')afo/aun k Zs(aL) Zs(a)}

- [Ep(2') k /1k | 8fg/au; + Ho(z') w/c/|k1| (u;/cy afp/Bu, - u Jey 8fg/du )]

s/aL Zs(aL) Zs(a)

- [E,-(Z') k,,/|kll - .Hg(zl) “-’/C/“‘ll U,,/C'Y] 'kll/Qc 3fo/8a Zs(aL) s/a Zs(a)}

. A . z . ' '
(. se-iot e/m 3 kst e1swjo dz' 6(z-2') F(z') (3.5) ‘

n,s
g which shows characteristic hysteresis integral with Green's function
G (z-2') = 1/v, eilw-swe) (z-2')/v, . (3.6)

The Laplace transformation of (3.5) can be done immediately by invoking

:. the convolution theorem, (
7L (k) = ot em D> kSt e1SY F(k) Flk) (3.7)
n,s

(3] r dz e-1kz 1yy et l-swe) 2/v,

0
= ivfag(k) : 9s(k)= w¥-ku - sQ ) (3.8)

,'. and

. F(k) = 25(a) [tk E5(k) afo/au, |

- sla (Er(k) k 7|k | afo/ou, + Hg w/c/lk | (u /ey Bfofou,

E- - u /ey 8fp/duy))] Zs(a) )

- (Bp(k) Kk, /1K | - Fg(k) w/eflk | u,/e) [k Qe Bfp/da
o s/a 25(a)| « L (3.9)
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APPENDIX A
ORTHONORMAL TMy, RADIAL EIGENMODES

We will derive here a complete set of orthonormal TM,, radial eigenmodes in
a waveguide loaded with an arbitrary number of concentric dielectric layers

as in Fig. 1. (For more general and detailed treatment, see Ref. 1.)

For azimuthally symmetric modes (3/88 = 0), the sourceless Maxwell's equations

in a linear dielectric medium (3 =€k, B = pﬁ; VxE=-py/coH/at and

VxH= €/C dE/3t), form a closed set of equations for E,, Ep, Hg;

0Ep/oz - 9E,/3r = - p/c dHg/ot
- dHg/dz = €/c IEr/dt (A.1)
1/r 9/3r(rHg) = €/c 9E, /3t .

Due to the cylindrical symmetry of the system, one can write the fields

(stationary in time) as

- o~iwt ik 2
E (r,z,t) = e7'F e'"ué e,(r)
E (r,z,t) = i e-lwt ik, 2 e (r) (A.2)
He(f‘,z,t) = i e'i“’t eikuz ho(f‘).

Substituting (A.2) into (A.1l), one obtains a set of radial equations
(' =d/dr),

k“e‘~ + ez' = pw/C he (A.3a)
k hg =€ w/c ep (A.3b)
1/r (rhg)' + ew/c ez = 0. (A.3c)




K,

K,

L

[

L,

Using (A.3b) one can eliminate e. in (A.3a), to obtain

k2 hg=ecw/c e,

(A.4)
(k2=ep3/c? - k).
From (A.3c) and (A.4), one obtains, by eliminating hy,
1/r (re,')' +kée, =0 (A.5)
or, by eliminating e,,
(1/r (rhg)')" + kf hg = 0. (A.6)

Radial Eigenmodes

The solution of (A.5) is given in terms of the Bessel functions of order 0

= A 2o (Ikyle) + Ko (I, IF) (A.7)

and the solution of (A.6) is given in terms of the Bessel function of order 1,

L
. J'. ......... .‘. P LT e e e ) . .. . . o e = e s e
A e e ST S S P RN R ISR TR P AR 0 N P TP P i P TP WP S S, WPLIDP™, . Sy e, §

hg =B Z1 (k. |r) +B 21 (|k,|r) (A.8)
where
J Y if k>
ZQ(x)E{ SRS :{ (TR
Ig(x) Kg(x) if kZ<o.

Of course, due to (A.4), the arbitrary constants (field coefficients)
(A,A) and (B,B) are related to each other by
B=-k ewc/lk | A T=- cofcflk| & (A.9)
since
< Z5(x) = - Q Z9(x) A
° (k = k2/[K]2).
To(x) = - Ty(x) e
Therefore, fields in a dielectric medfum are completely specified by two
arbitrary constants (A,A) - the field coefficients. The field coefficients in
one dfelectric layer and in another dielectric layer are related to each other
by the boundary condition that ez and hy be continuous. This can be shown as

follows.
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By defining
A
(i) L)
hg(r) A

Zo (lkllr) _Z_o (lkllr) )
M(r)={ A )
-kew/c/lk | Zi(lk Ir) - ew/e/lk | Tallk i)/,

one can write (A.7) and (A.8) with (A.9) as in compact vector form as
F (r) = M(r)V. (A.10)
Consider this relation in the i-th region and the i+1-st region,

F(i) (1) (i)

(r) =M "(r)V

F(‘i+1) (i+1)

(1) = w0 ey v,

At the boundary r=r;, F(i)(ri) = F(i+1)(ri) and therefore one obtains the

connection formula

vii+l) = s(i+1,1) (p ) v(i) (A.11)

with transfer matrix
S(i+1,i)(ri) = (M(i"'l)(ri))'l M(i)(ri).

By applying (A.11) successively, one can express field coefficients in any
dielectric layer in terms of the field coefficients in a particular dielectric

region (for example, in the innermost region).

Actually, one can prove that the transfer matrices S form a transformation

group in a discrete vector space V.

In the innermost region, fields must be finite at the origin (regularity

conditfon) and therefore
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1
v(l) = c( ) . (A.12)
0

By applying (A.11) successively, one can find the field coefficients vIN) in
the outermost region by
vN) = s(N,1)y(1) (A.13)
where
sN,1) = s(NN-1) (e 1 ).L.s(21)(rp)
In the outermost region, the fields must satisfy the boundary condition that

ez(N) must vanish on the conducting wall at r = ry;

e, (ry) = ANz (1Wey) + BNZ (1)) = 0

which can also be written in vector form as

pv)T. viN) = 0 (A.14)
where

-~ 2,0 (M)

N
2, Min )
Combining (A.12) - (A.14), one obtains a dispersion relation

P s(N1) L (1) 2o, (A.15)

which gives an eigenvalue condition on k for a givenw. The solutions of
(A.15) for k, form a discrete set of radial eigenmodes characterized by k  ,
or simply n. Having found the radial eigenvalue, the fields in all the
dielectric layers are completely determined up to an overall normalization

constant C.
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Orthonormality

Let us now prove the orthogonality between two different radial eigenmodes
and obtain the appropriate normalization constant for a given mode. This is
an essential step in projecting out the correct T™My,-component field radiated
from a radially localized source when we introduce an electron beam as in the
text. Denoting the radial eigenmode by subscripts n and n', (A.6) reads, in

the i-th dielectric region,

)
(1/r(rhg n)') + kf,n hg,n =0 kf,n = €4y W2 /c? - kf.n (.16)

(1r(rhg 0 )) + k2 ihy o= 05 k2 s eqpy 2702 - k2L

(For notational simplicity, we have dropped the superscript i indicating the
dielectric region on hg and k;.) Multiplying (A.16) by hg n* and hy p,
respectively, subtracting one from the other and integrating over the
dielectric region,J.:1 rdr, one obtains

i-1

r. ‘
0 =J' U odr {[rhg,n'(l/r(rhg,n)') - rhg,n(1/r(rhg n')) 1]
ri-1

2 2
+ (k{,n = ki ,nt)rhg e "9»"1
] ri 2
= [he.N' (rho,n)' - h9,n(rh0,n') ] + (ku ,n'" = ku,n) X
Fi-1
ry
I rdr he’n' hg’n
ri-1
and, upon using (A.3c),
(kn n' u n)j rdr ho n' he n/€.' ’(L)/C [r(h n.ez n-
Mi-1
8
hg,nez,n')] . (A.17)
ri-1
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Now one can add expressions similar to (A.17) from all the dielectric regions.

Note that the terms in the right-hand sides cancel cut at the boundaries

PO

between dielectrics (because both hgand e; are continuous) and vanish at

24

the origin and on the conducting wall.

Thus one obtains

Ancmshadi mei s

N riy
(kg,n. - kg’n) S rdr h ,
i=1 ri_l

/e = 0 (A.18) )

which is the desired relation.

If k%,n' # kﬁ ne 1.e., 0 #n, (A.18) gives the orthogonality relation
N ary iy (i ]
P> rdr hé,g' hg,g/ei =0 (A.19)
i=1 ri-1

A s

and, for r' = n, the field hg,n has a normalization factor

N rj i)2
Ch I f rdr hg,Z Jeis (A.20)
, - i=1J rj

The physical meaning of this normalization constant C, becomes more clear if

one writes it as, using (A.3b),

Cp =w/c/k, 2 fri rdr hf(,',), em (A.21)
i=1 ri-1
which 1s nothing more than a quantity proportional to the total power flux
of the entire waveguide, Sz-_=f21rrdr Re (c/BrEp H;) = c/4 igl :‘ rdr eijr), }
hgjz, that is, - ;
Cn = 4/cw/c/k Sp,n- (A.22) g
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APPENDIX B
ANGLE INTEGRALS d

The angle integral defined by (3.12) can be calculated straightforwardly
by using Graf's addition theorem (3.4) for expanding and recombining q

Bessel functions.

() = fag e15% 25(a) §(6) [8p(8) = (6(6-8o) + 8(6+5o))/a sintg 4 ()]

2 ks z, s(a ) Zg: (x) fd&e"s'g p(8)
sl

A )
28/a singoz kS' Z¢i s(aL) Zgi(x) cos s'g,
Sl

= Is(ap) 0g(x) [04(x) = ZA/aLsinéocos s¢g] (B.1)
Similarly,
q
I3(x) Efdg 1/i sing e'S¥  Z.(a) Gp(¢) (8.2)
= Zs(ao) SS(X) M Ss(X) = 2°/aL sin Swo .
q
For I2(x) and I4(x), note that
A
s/a Ig(a) = 1/2 (Zg-1(a) + k Zg+1(a))
and *
= (x2 2 _ 1/2
a = (xc + aL 2xaL COSE)
eti¥ aazlaa = aﬁz/aaL :_1/aL aGZ/ag . ﬁ

B-1
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I5(x) Efdg eis¥ s/a Z(a) a'g\z/aa
) fdé i72 (1510 7 ) (a)e™? 95p/0a +k el(s¥1)¥

Zg,q(a) e ¥ 89,/32)

= 1/2 (13(x) + k 15(x)) (8.3)
where
I3(x) = fd&ei(s'l)w Zs_l(a) ef¥ aaz/aa
A ie! A . A
= Z kS zs.+s_1(aL) ZS-(x)fd§ els’s (agg/aaL +1/a 89p/8¢)

Z S‘ s +5+1(aL) an(x) (3/3aL + Sl/aL) ZA/(aL Singo) C05$'§o

S
A
K

28/ (a s1n§°) Z(agy) coss¥, + (a/aa - (s- 1)/a ) 2 /(aLsmgo)

Z..1(ay) cos(s-1)¥g
= & 2g(ag) 0g(x) + Zs_1(ag) (afoa - (s-1)/a ) 01 (x)

(B.4)
and similarly
—_ j 1 -1 A
13(x) =fd§ el(s+1)¥ Z.,1(a) e ‘wagz/aa 5.5)
= - Is(ag) O0g(x) + Zs+1(ao) (Ei/aaL + (s+1)/aL) Os+1(x) .
Substituting (B.4) and (B.5) into (B.3), one obtains
Io(x) = 1/2 [Z4_1(aq) (a/aaL - (s-l)/aL) 0g-1(x) + % Zs+1(ag)
(B/BaL + (s+1)/aL) 0g+1(x)] . (B.6)
Likewise,
14(x)=fdg 1/1 siné els¥ s/al (a) agzl’aa
= 1/2 (I3(x) + k 14(x)) ' (B.7)
B-2
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where

I(x) = fd§ 1/i sint e (S=1)¥ 7 (a) ei¥5,/a
Ao

K 2o (@) 20 () fag 174 sing eTE (0820 + /2 35,050

s

AL . ,
2; kS Zs'+s-1(aL) Zgi(x") [(3/aaL +s /aL) ZAJaL sin s'§,
- 1/aL 2Acos§o/(aLsin§o) cos s'fq]

= & ZA/aL Zg(ay) sin syy + (alaaL-(s-l)/aL) ZAJaL Zg.1 (ap) sin (s-1)y,

l/aL ZAcosgo/(aL singo) Zs-1(ag) cos (s-1)¥g

"
x>

Zs(ap) Ss(x) + Zg-1(ap) [(a/aaL - (s-l)/aL) Ss-1(x) - l/aL Cs-1(x)]

(B.8)

with Cg(x) EZAcosgo/(aL singg) cos s¥, and
150x) = fag 171 sing ei(s*1)¥. 7. (a) e ¥ag,/0a
= - Zg(ag) Ss(x) + Zg+1(ap) [(a/aaL + (s+1)/aL) Ss+1(x) + 1/aL Cs+1(x)] ©

(8.9)
with (B.8) and (B.9), (B.7) gives .
I4(x) = 1/2 [Zg41(2p) ((a/aaL - (S-l)/aL) Ss-1(x) - 1/aL Cs-1(x))

+k Zg+1(ag) ((3/aaL + (S+1)/aL) Ss+1(x) + l/aL Ce+1(x))] &
(8.10)
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APPENDIX C
RADIAL INTEGRALS

For radial integration, note that

X = (ag + a - 2a,a cos'~l/o)1/2 :
L L
dx = 1/x aoaL sind, d¥y = 2 singy d¥p -

Define

=)
wn
n

1727 [ dx Zo(x) 05(x) [05 (x)=24(x)/ (a 510 € 0)]

X+
- 1/217f ax/ (2 sin £4)2o(x) 2 cos s¥o

X=-

At n
=§ kS ZS.(aL) Zoi(a,) 1/2n . ¥y 2 cos s'Y, cos sy,

= ks Zo(a ) Zg(ao) (c.1)

where the relation Z_I(x) = (-?)lzl(x) was used.

Also,
S = 127 f dx 23(x)Ss(x) [Ss(x) = 28(x)/a_sin st]
X+
= 1/25/‘ dx/(a sin £4)Z1(x) sing 2 sin sy
X L
ZA 241 (a)) Zge(ag) 1/2nf 7 a2 sins'Yy sin s¥,
0
- k¥l s/a_Zg(a ) Z(a,) (c.2)
and

Cs = IIZnﬁx 21(x)Cs(x) [Ce(x) = 2Acosfo/(aLs1n§o) cos s¥p]

X+
= 1/2nf dx/(aLsingo)Zl(x) cosfo 2 cos s¥y
X=

C-1
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“ A

= . kS Zs.+1(aL) Z,:(a,) 1/2;t/': d¥y, 2 cos s'Y, cos sy,

." A ‘
(s - kst 20(a)) 240a,) (c.3)
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With these, one can easily carry out the radial integrals. From (B.1l) and

(B.2), ﬁ

I, = /l:S/andx Z,(x) Iy(x)
= kS Zs(a,) O

= Zi(ao) ZS(aL) (C.4) ’
and
T3 = QS/andx Zy(x)I3(x) q
_— Z5(a) S
-k 28(a) s/a 25(a)) = k s/a Ty. (c.5)
4
For T and T4, using the recursion relations
(B/aaL - (5'1)/3L) Zs-l(aL) = -k zs(aL)
4
(3/33L - (5*1)/8L) ZS+1(aL) = Zs(aL) ,
one can easily show that d
T, = k8/2r [ dx 25(x) 1,(x)
= kS/2 { Z5.1(ap) (3/3a - (s-l)/aL) [ o Zo41(2p) {
(a/aaL + (s+1)/aL) Us+1}
= - 172 (21(a,) - Z,1(20)) Z(a) {
= - s/ (15(ag)" Z(2) (c.6)
{




and

-— A
f’ T E=ks/2njrdx Z(x) 14(x)
=S

/2 { Zg.1(2o) [(a/0a - (s-1)/a ) Sgy - 1/a Tg 4l

o R Zev1(a0) [(o/0a + (s+1)/2) Sse1 + 18 a1l |
= - Wiz (21(a,) - Z,1(ap)) s/a Zg(a)

® =% s/aL Ty (c.7)
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Invited paper
Theory of a slow wave cyclotron amplifier

K. R. CHUf, A. K. GANGULYt, V. L. GRANATSTEINT,
J. L. HIRSHFIELDZ, S. Y. PARKS and J. M. BAIRD}§
A new type of travelling wave amplifier is proposed which features a slow wave

structure and wide bandwidth operation. [t 18 based on the cyvelotron interaction
between a slow electromagnetic wave and helically moving clectrons.  Gain and

bandwidths are calculated including the cffect of beam velocity spread. It is shown
that a bandwidth as high as 50", could be achieved with beam velueity spread
< 1%.

1. Introduction

We report the concept of a slow wave cyclotron amplifier (SWCA) based
on the cyclotron interaction of a slow electromagnetic wave and a stream of
helically moving electrons. The SWCA has the potential of wideband and
high power operation at millimetre wavelength. As in typical microwave
devices, the basic mechanism for radiation is electron bunching under the
influence of the RF field. In the case of SWCA electron bunching is caused
by the v, x B, Lorentz force, where v, is the electron velocity and B is the
magnetic component of the wave field, both transverse to the applied magnetic
field. This mechanism is qualitatively different from the cyclotron maser
mechanism involved in the gyrotron travelling wave amplifier (Gyro-TWA).
A detailed comparison of the present mechanism and the cyclotron maser
mechanism can be found in Chu and Hirshfield (1978). The potential use
of the v, x B, bunching mechanism for high frequency wave radiation has
been suggested and analysed by Hirshfield et al. (1978).

Before proceeding with the analysis, it is instructive to compare the SWCA
with two other microwave devices—the Gyro-TWA and the travelling wave
tube (TWT). The TWT (Pierce 1950) employs a longitudinal bunching
mechanism driven by the axial electric field (£.) of a slow wave structure
such as the helix. The radiation energy in this device is derived from the
electron streaming velocity v, and no cyclotron resonance is involved. In
contrast. both the Gyro-TWA (Granatstein et al. 1980, Barnett et al. 1980,
Symons et al. 1981) and the SWCA depend on the free energy which resides
in the transverse electron velocity. v,. These two devices are similar because
they both extract energy from the beam through electron interactions with the
transverse component of electric field, £, : and they both radiate at the
Doppler shifted electron cyclotron frequency or a harmonic. As described
above (also in § 3) the difference between the two devices is in the mechanism
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swea Gyro-TWA TWT 1

Wave type Slow wave Fast wave Slow wave
Condition of operation w—kp,—3Q.<0 w—k,—sQ .20 w—kp,<0
Cyclotron resonance Present Present Absent
Field responsible for B, E, E,

electron bunching |
Field responsible for E, E, E,

energy extraction ,
Nature of bunching Non.relativistic Relativistic Non-relativistic

mechanism
Free energy v, v, v, 1

Table 1. Comparison of SWCA with Gyro-TWA and TWT.

which produces the phase bunching. The principal advantage of the cyclotron
resonance devices over the TWT is that the dimensions of the interaction .

structures permit much higher power outputs to be obtained at shorter wave- L
lengths. The above comparison is summarized in Table 1.

Preliminary results of our studies have been reported in several conference
proceedings (Chu et al. 1978, Sprangle et al. 1979, Baird et al. 1980, Keren
et al. 1980). In this paper, we present a more complete theory of the SWCA.
In §2, a particular slow wave circuit—the dielectric loaded waveguide—is q
examined. In §§3 and 4, the dispersion relation of the SWCA is derived
and analysed. On the basis of which a proof-of-principle experiment has
been designed. Finally, § 5 contains a summary of the present work and a
brief review of related work.

2. Properties of the dielectric loaded waveguide 1
The beam-wave cyclotron resonance condition is given by

w—ky,—s0,~0 1

where w is the wave frequency, k, is the wave number, v, is the beam axial
velocity, s is the cyclotron harmonic number, and Q. is the electron cyclotron %
frequency. Wide bandwidth operation requires that (1) holds over a broad

4 range of frequencies. Differentiating (1) with respect to k, gives

.

- dw

- - ——

' dk' vl (2)
L

= Hence a wide band circuit is one whose group velocity (dw/dk,) coincides

with the beam velocity over a wide frequency band. One way to realize

such a circuit is to load the waveguide with dielectric material. In this

section, we examine the properties of a dielectric loaded waveguide as shown

in Fig. 1 (in the absence of electrons). It is weil known that TE and TM <
| J modes are separable only for modes without angular variation. For simplicity, 4
s we shall restrict our consideration to the TE,, modes, where the subscript n

rvvwwr Ty vy
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Slow wave cyclotron amplifier 495

Figure 1. Cross-sectional view of a SWCA employing dielectric loaded waveguide.
All the electrons have the same guiding centre position and are uniformly
distributed on the circle of radius r,, The applied magnetic field (Bge,)
points toward the reader.

refers to the radial eigen-number. The TE,, mode dispersion relation (in
the absence of electrons) is given by

k, .
E—f Jl(knlrd)['ll(knzrw) Yo(knz"d) ‘Jo(knz’d) Yl(knzrw)]
+i“]0(knlrd)[‘]1(knzrd) Yl(knzrw) —Jl(knzrw) yl(knzrd)] =0 (3)
where

2

w
2 _ 2
k=2 -k,

(4)

w
knzz = e c_z —kzz

e and u are, respectively the dielectric constant and permeability of the
dielectric liner, r, is the inner radius of the dielectric liner, r, is the wall
radius (Fig. 1), J, and Y, are, respectively, Bessel functions of the first and
second kind. For a given k,, there are an infinite number of solutions for w,
which are denoted by the mode index n. The electromagnetic fields associated
with the TE,, mode are

{Jo(k,ur), re<ry

ad y(kpg?) +0Y o(kpa), T>T4

3

(5)

: Jl(knlr)» r<ry
H,= (6)

—1k
o (o) +5T )] 776
n
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5 fhiad Ji(k?) r<ry {
ko
Eo=1 . (7)
lw .
IC—_C [n'll(/"n;.’r) +b1 l(kn‘zr)]v r>ry
nl
: where ‘
~y T ks ., N
.' a=kury I:k =Sy (knyra) Yolknara) — pd o(knyry) X l(kn'.!rd)]
- nl
m knz
b =3 Knara | pdolkny?a)d 1(Knary) "k—l Solknar W 1(kpyry)
and all field components vary as exp (—iwt+ik.z). A noticeable property
. of these electromagnetic fields is that (£, H,) forms an orthogonal pair, i.e. $
e =0 if E,and H, have the same mode number n
§ rE,H *dr (8)
0 #0 if E,and H, have different mode numbers
but (E,, E,), (H,, H,). (B., B.) are not orthogonal pairs.
’ -1
10 v
o ’/‘\LIGHT LiNE
. q
) |
v .
(b) v
3 ! | {
ext I
Ey = I
€22 i
® I ' q
«x10 E?
| L 1 L ll/l
] tq [
Figure 2. (@) w versus k, plots of the TE,, mode of the dielectric loaded waveguide. J
*® ri/tw=07 and u=1. Light line is defined by w=kec. (b) E, versus r of
the same waveguide. Shaded area indicates dielectric region.
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Figure 2 (a) plots the TE;, mode dispersion characteristics for r /r, =0-7,
w=1, and three values of the dielectric constant ¢. The case e=1 corres-
ponds to an unloaded waveguide. In all three cases, the wave group velocity
(dw/dk,) approaches a constant value (condition for wideband operation),
while larger ¢ gives smaller group velocity. The unloaded waveguide (e=1)
is impractical because its asymptotic group velocity approaches the speed of
light. This is the reason that dielectric loading has been added to lower
the asymptotic group velocity so that the wave could interact with a moderately
energetic electron beam.

Figure 2 (b) shows typical E, profiles of the TE,, mode (eqn. (7)). As e
increases, E, tends to concentrate toward the dielectric region. When ¢ is
so large that w/k,<c (i.e. k,, becomes imaginary, see eqn. (4)), the electro-
magnetic wave can be regarded as a surface wave on the dielectric. A more
sophisticated model of the dielectric loaded waveguide has been analysed by
Park et al. (1980).

3. Dispersion relation of the SWCA

Figure 1 shows the present model of the SWCA. The electrons move
along helical trajectories under the guidance of a uniform magnetic field
(Bye,). We assume that the beam is sufficiently tenuous that its space charge
field can be neglected. Hence, the radial dependence of the RF field is that
of an empty dielectric loaded waveguide (eqns. (5)-(7)). We let all quantities
depend on ¢ and z through exp (—wt+1tkz). The presence of the electron
beam, treated here as a perturbation, modifies slightly either w or k, such
that w or k, has a small imaginary component to give rise to wave growth.
The purpose of the following analysis is to derive a dispersion relation which
determines k, as a function of w or vice versa. Using (5)-(7) and the Maxwell
equations, we obtain

w? —4miw
(;—kzz—knxz) B, = py oV (9)
where the superscript (1) denotes first order quantities and J,’ is to be
evaluated from the equation

JoW=—e | fO)x, p, t)v,d?p (10)

and the perturbed distribution function f’ can be solved from the linearized
relativistic Vlasov equation

Et+v ox

where f, is the equilibrium distribution function, p is the electron momentum,
E® and B® are given by (5)-(7).

In the above, (9) is the field equation, (11) is the electron dynamics equa-
tion, and (10) serves to connect (9) and (11). To solve (9)-(11), one must
first specify the form of the initial electron distribution function in terms of
the constants of motion of the system, namely, the perpendicular and parallel
momenta p, and p., and the canonical angular momentum P, To be
consistent with the usual experimental configuration that all the electron

0 9 d 0
<_ .__evxBoez.$>f(n=e(5m+vx3u>).a_P/o | (11)

J.E. 2c¢c
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guiding centres are approximately located on the same cylindrical surface
defined by r=r,, we choose f, to be of the form (Chu 1978)

f0=08(r1,2_2P0/eB0_r02)g(p_j_1 p:) (12)

where &(r) is the Dirac delta function, r =p, /eB, is the electron Larmor
radius, g(p,, p,) is an arbitrary function of p, and p, satisfying { gd3p =1,
and C is a normalization constant chosen to satisfy | fy2mrdrd3p =N, where
Y is the number of electrons per unit axial length. Methods for constructing
fo as well as the steps leading to the dispersion relation are similar to those
described elsewhere (Chu 1978, Chu et al. 1980). Here we present the result
directly,
w? -8y % ®

E?“k=2"k"‘2=r_w'2—1€ g p.9p, _Iw dng(p.pp:)

x (w2 _kzz Cz)p.Lz Hs(knlr()’ knlrL) _ (‘” ‘k:v:)Qs(knlrox knlrL) (13)
yImicHw — kv, — sQ,)? ylw—kv,—sQ,)

where v=Nr,, r,=2:8x 10~12 cm is the classical electron radius
H(z, y) = (J4(x) () ]2
Qu(x, y) =2H (z, y) + yJ " (y)J " (¥ 2(x)(} + 83/x?) + [T’ o(2)]?}

+ 232‘13(:”)‘]'3(3:)‘],3(:’/)[y‘],s(y) - Ja(y) ]/xy
and

-2k, 2c

K= § E4H>rdr
0

wk,r,?
Note that K is a quantity proportional to the Poynting flux of the electro-
magnetic wave in the waveguide. Equation (13) has been written in a form
to lend direct comparison with the dispersion ‘relation of the Gyro-TWA
(Chu et al. 1980). In the limit e=1, eqn. (13) reduces to the dispersion
relation of a TE,, mode Gyro-TWA. This is expected because the SWCA
differs in physical structure from the Gyro-TWA only in the addition of the
dielectric liner.

Further comparison of the two devices is illustrated qualitatively in Fig. 3.
Because of the presence of the dielectric liner, the phase velocity of the guide
mode (eqn. (3)) falls below the speed of light at large k,. This consequently
renders the bunching process in SWCA qualitatively different from that in
a Gyro-TWA. The bunching force is magnetic and the bunching mechanism
is non-relativistic in the SWCA, while the bunching force is electric and the
bunching mechanism is relativistic in a Gyro-TWA. The two mechanisms
are in fact simultaneously present in either device and competing with one
another. For fast waves (w/k,>c), the relativistic bunching mechanism
dominates. For slow waves (w/k,<c), the non-relativistic bunching mech-
anism dominates (Chu and Hirshfield 1978). Thus, the fact that the SWCA
operates in the slow wave regime and the Gyro-TWA operates in the fast
wave regime (Fig. 3) represents a fundamental difference in the physical
mechanism. As a consequence of this difference, the magnetic field is tuned
such that the guide mode lies above the beam mode for the Gyro-TWA and
below the beam mode for the SWCA (Fig. 3).
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GYRO-Twa SWCA
G /,
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Figure 3. A qualitative comparison of dispersion curves between the Gyro-TWA
and the SWCA. The physical structures differ only in the absence (Gyro-
TWA) and presence (SWCA) of the dielectric liner. The guide mode is
plotted from eqn. (3). The beam mode is plotted from eqn. (1). The growth
rate is calculated from eqn. (13). The main feature is that the Gyro-TWA
operates in the fast wave regime with a smaller bandwidth, while the SWCA
operates in the slow wave regime with a wider bandwidth. Note that in the
region where there is gain, the guide mode line is above the beam mode line
for the Gyro-TWA and below the beam mode line for the SWCA.

4. Calculation of the small signal gain and design of a proof-of-principal experiment

The electromagnetic field in the waveguide varies as exp (ik,z), hence in
the small signal regime the output power (P) depends on the input power
(P,) through

P = Pyexp (—2k,L)

where /c.i is the imaginary pa.rt of k, and L is the interaction length. The
total gain (G) is then

G=10log P/Py~ -8k L dB (14)

Note that (14) gives the interaction gain of a single mode. The real gain
of an actual device is given by (14) minus the input coupling loss. The gain
per unit length (g) is given by

g=G/L = —87k,, dB/unit length (15)

where k., is to be evaluated from (13).
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Figure 4. Gainjunit length versus frequency for different beam velocity spread.
The point marked * design data ' has been used in the design example (Table 2).
Parameters used are V,=60keV, I ,=5A, r;/r,=08, ryr,=051, e=16
and x=1. The optimized magnetic fields for each curve (for top to bottom)
are B,=1-89 kG, 1-90 kG, 1-93 kG and 1-95 kG, respectively.

Figure 4 provides a specific example of the gain calculations for a mono-
energetic electron beam with the following distribution in momentum space

— — 2
9(pL, p)= A3y — y,) exp <—(§_:Ap§i) (15)
where 8(x) is the Dirac delta function, 4 is a normalization constant,
y=[1+(p 2+p.2)m¥2}2, 4, is the electron relativistic factor, p., is the
mean axial momentum, and Ap, is approximately the standard deviation of
the electron axial momentum.

In Fig. 4, g is plotted as a function of the wave frequency for several values
of momentum (or velocity) spread. The corresponding bandwidth (Aw/w) is
also indicated, assuming a total small signal gain of 20dB. Parameters
used to generate Fig. 4 are indicated in the figure caption. For each velocity
spread, there is a different optimal magnetic field, also indicated in the figure
caption. One observes from eqn. (1) that a spread in v, tends to spoil the
resonance condition and thereby degrades the operation. Further, the
sensitivity of the resonance condition is proportional to k. as shown in (1).
Since the SWCA operates at a relatively large wave number compared with
the Gyro-TWA (Fig. 3), it is much more sensitive to electron velocity spread.
The sensitivity is clearly exhibited in Fig. 4. For a perfectly cold beam, a
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maximum bandwidth of 55°, is predicted but the bandwidth degrades rapidly
to 17%, with a 3-6°, velocity spread. In comparison, the Gyro-TWA can
tolerate a much higher velocity spread (Lau et al. 1981)., On the other hand,
the Gyro-TWA, operating near the cut-off frequency of the waveguide, is
known to be susceptible to band-edge oscillations caused by an absolute
instability (Lau et al. 1981). The SWCA operates further awayv from the
cut-off frequency and consequently is expected to be less susceptible to such
oscillations.

The point in Fig. 4+ marked ‘ design data ' has been chosen for a proof-
of-principle experiment design. Parameters of this design are shown in
Table 2. Details of experimental considerations (Baird et al. 1978, Keren
et al. 1980) have been described elsewhere.

e bl

Y- ST )

il Mt b i

. Central frequency 6-9 GHz
Bandwidth 179,
Total gain 20dB ,
Gain/unit length 0-36 dBjcm
. Beam voltage 60 keV 4
Beam current 54A !
v, /v, 2 X
Applied magnetic field 1-95 kG 1
ra 1-427 cm 1
To 1-784 cm i
Ty 0-915 em .
T 0-405 cm -
¢ 16 L |
p 1 ]
Table 2. Design parameters of a C-band SWCA. 3
5. Summary
We have presented the concept and small signal theory of the SWCA.
. It employs a physical mechanism not yet exploited for coherent microwave

generation. The prospect of high-power, wideband operation at millimetre
wavelength constititutes the main attraction of this device. However, the
degrading effects of electron velocity spread may present a difficult problem
in its implementation,

A dielectric loaded slow wave structure has been chosen to illustrate the :
principle of operation. Other slow wave structures, such as the periodically
loaded waveguide and the helix, can also be employed and may even offer
significant advantages over the dielectric structure in terms of high power
and, most of all, the avoidance of loss and space charge build-up on the ﬂ

dielectric.

In this paper the basic principle is emphasized. Operation at a higher
order (n) waveguide mode or at higher cyclotron harmonies (s) is included
in the model but not analysed. Recently, Park et al. (1981) have developed
a more refined theory of the SWCA and demonstrated some interesting features
of harmonic operation. Ganguly and Chu (1980) have considered a SWCA
model in slab geometry. Uhm et al. (1981) have studied a variation of SWCA
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in which the ddielectric material is inserted in the centre of the waveguide,
A related deviee similar to the SWCN in structure and to the TWT in physical
mechanism has been reported by Feleh et al. (1951).
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n\2

8 2
JS = 4,72 x 10 <Q> amp/cm

If Q = 104, we find Jg = 4.72 nzamp/cmz: a 10 ampere,
0.04 cm“ area beam would, according to this criterion,
support oscillations at harmonic value up to and including
the seventh. According to Table II, this would correspond
to frequencies as high as 1035 GHz.

This analysis, based upon an admittedly idealized
model, suggests that the potent high cyclotron harmonic
interactions, studied more than a decade ago in non-Max-
wellian plasmas, may be exploited to generate coherent sub-
millimeter wave power. The model presented here does not
take into account the actual fields of a practical confocal
Fabry-Perot resonator, the practical means of coupling
power out, the actual spatial distribution of available
electron beams, or the non-linear saturation levels for
steady-state oscillations. All of these questions, and
more, will have to be addressed before the cyclotron har-
monic maser can be considered understood. Perhaps experi-
mental demonstration can serve to stimulate interest in
this promising mechanism.
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Cyclotron Harmonic Maser 701

For the anti-symmetric modes, it is a simple matter to
show that the dispersion relation is given by a relation
similar to Eq. (10), except that the left-hand side is re-
placed by -tanknl/knﬂ. Since for the parameter range of
interest [2/(L-2)]cotk 2/kn% << 1, Eq. (10) may be approx-

imated as
mnc g
“hm = L-2 [1 + dn(L-l)] (11)

where &, = cotkp/kpt for symmetric modes, and §, =
-tanky2/kpf for anti-symmetric modes. The discrete spec-
trum given by Eq. (11) contains two indices; n is the cy-
clotron harmonic number, and m is the resonator mode
number.

We shall illustrate the nature of solutions to Eq. (10)
by reference to a specific example. Suppose the electron
beam thickness is such that /W = l/rg = 10, where ry is
the electron gyration radius. Then kpf = zpQ&/W = 10z,.
Furthermore, we take (L-2)/%2£ = 20 and £ = 0.1 cm. Table II
shows then, for each harmonic, the spectrum of frequencies
predicted by Eq. (10), together with the associated mag-
metic field value. Only that portion of the spectrum avail-
able for magnetic field values below about 53 kG are given.

Of course, the existence of modes which satisfy the
equation of real parts given by Eq. (10) does not insure
that oscillations will in fact start. A rough criterion is
that the rate of growth for the instability be balanced by
the rate of energy dissipation into finite cavity losses.
This is expressed as

Imw 1 12)

Rew > 56
where Q is the resonator quality factor. If we take
Imw/Rew = 0.3me/ncﬂ, from Eq. (4), then Eq. (ll) can be
used to find a start-oscillation current density Jg. This
can be expressed as

2 2
6({nB 1 1l +a
JS = 1,65 x 10 ) ) vl/z a3 >

where J; is in amperes/cmz, B is in kG, V is the beam
energy in kilovolts, and a = W/U is the momentum ratio.
For B = 50 kG, V = 30 kV, and o« = 2, we have
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13/2\ z_ 7
=+ i " (2 )J . (7)
y p n n

This expression shows our approximation of nearly longitud-
inal polarization to remain valid throughout the range of
parameters of interest.

m'm
b
|0

We must now consider the matching of the fields with-
in the electron beam (0 < 'x| < ?)

Ei(x.t) a (éxE + éyET)COSanCOSwt (8)

L
to the fields outside the beam (i < |x| < L)

E (x,t) = éysosin[i‘c’-(r. - |x])]cosut . (9)

Eq. (8) gives the symmetric modes [E,(-x) = E.(x)]; the
anti-symmetric modes may be developeé in parallel. Eq. (9)
gives the vacuum field which matches the requirement of
vanishing taagential electric field on the conducting bound-
ary at |x| = +. At |[x| = 2, tangential electric field and
its normal derivative must be continuous. Thus

w
ETcosknz Eosin[c(L - )]

and k E.sink 2 = 2E cos[2(L - 2)] ,
n n CcC 0 C

T

so that the dispersion relation which must be satisfied for
the beam in the resonator is

w
cotkni ) L -2 tan[c(L - Qﬂ
k 2 L
n

(10)
w
[fe - ]

For the k_which have already been specified as leading to
the maximum growth rate for the instability, Eq. (10) gives
the corresponding discrete values of w. We shall find ap-
proximate roots of Eq. (10) by assuming Imw << Rew, and
Imk, << Reky. Then Eq. (10) holds for the real parts, to
lowest order; Imk, may then be found from Imw using a
Taylor's expansion of Eq. (10) about its roots for real
values. These complex corrections to the k, are not of
great consequence in what follows.
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Ex eP12
= ——— (3)
E -2 + ¢gP
y y 11
and for y2 = gPy] 1is thus nearly longitudinal. Let us
first analyze the relation y< = ¢Pj3;, which is the disper-

sion relation for purely longitudinal waves propagating
across B ("Bernstein' modes). These modes are unstable
with approximate maximum growth rate for the lowest wave-
number such that J3(z) = 0. We designate this value as
2n. In this case y2 = eP11 gives

w=y oW "o 2y (4)
Yy ° 3/2 ¢ z ¢
Y n

The value of an(z )/zn is slowly varying with n; it has
the approximate value Of 0.3 for n up to 20. The growth
rate given by Eq. (4) can thus be relatively large for par-
ameter values of practical interest, even for quite high
harmonic number n.

Anticipating instability for the wavenumber correspond-
ing to z, at each harmonic, we can examine the full disper-
sion relatiom at this particular wavenumber. Here X;; =
X390 = Y39 = Yy, = ¥25 = 0, and X132 = - X7 = inJp(zq)In(zq) -
Thus Py = - [y/(y - n/y)]zYll, P22 = 0, and Py =
i(y/(y = n/y)1Xy5. The full dispersion relation is then

"' c:zz2 2

2 y n_ 2 2{_ vy 2 _

[y + ¢ "o Yll_l[wz y]+e n> le 0. (5)
J Y Y

For nearly longitudinal slow waves cz,/W >> y, and Eq. (5)
becomes

ng | mp W an(zn) 2.2 1/2
w = Tk i Y3/2 CL. z 1 -¢€n Jn (zn) . (6)

Clearly for nle << 1, Eq. (4) is accurate. In this aprox-
imation Eq. (3) becomes
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n TABLE I
Elements of the dyadics §n and Zn for the distribution
function fo(u,w) = (N/27W)S8(u-U)S(w-W). Here Jrl = Jn(z)
. ' =
i and Jn dJn(z)/dz.
, 2
. 1] i3 LURFP
2 2
a’ 2y, 201 2
. 11 z (Jn) 33,
¢’z
in W2 1
o) =~ 1] 1 —— 1]
12 2 (anJn) in > Jn n
o nl, 2., Uwl 2
13 W (Jn) n ccz Jn
in wz 1
21 - =—(zJ . J"! -in —=3J3J'
. z nn c2 z nn
1, 2.2 w2 2
= ' —_— '
22 z(z J"_‘ ) 2 Jn
c
S PR L HU
g 23 1723 30) 12233 q
- U g2y U¥1 2
31 n W(Jn) noC; Jn
o q
Ues gy UW ;o
32 i w(anJﬂ) i c o Jan
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® w2 n c2 n
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momentum to be cold, i.e. fy(u,w) = (N/27W) & (u-U)8(w-W);
and we assume that linearized interaction of this beam with
electromagnetic radiation is governed by the dispersion re-
lation for plane waves in uniform hot plasma (11). The
model should be viewed as an idealization, probably un-
achievable in the laboratory, since we assume the electron
beam to be a uniform slab with sharp boundaries and we im-
pose no boundaries along z. This model allows one to form-
ulate a tractable theory which still retains the critical
physics describing significant harmonic operation. For
excitations which are independent of z, i.e. for k, = 0,
the dispersion relation for these excitations (Eq. 1-99

of Ref. 11) reduces to det R = 0, where

2.2
55 R=- gl & + S ; -y llee +ee
a X X W yy ‘zz ]
. . (L
+e{ee+§:[_y_ —r—)zy] ,
' "z 2z _hf5n _nj=n
- n=s—o v Y 7 Y

with @ = eBy/m, v = w/Q, z = k,W/Q, and ¢ = wg/YQZ. The
elements of the dyadics ¥, and I, are given in Table I.
For electron beams of practical interest € << 1, so that
the solutions to Eq. (1) may be found harmonic-by-harmonic.
That is, the summation may be suppressed and the harmonic
number n considered as a parameter. We present a solution
here in the beam frame, where U = 0. Then Xl3 = Xo3 =
X3) = X32 = X33 = Y13 = Y3 = Y31 = Y33 = ¥33 = 0.
Eq. (1) then becomes

(2)

2.2 22
ez 2 2 c'z 2 2.2
- + - + - =
[Wz ’ 5] { ¢ Epll][wz a €P22]+ : P12 "0

where Py = [y/(y = a/) Xy = Iy/(y = a/m)?y,.

The fifs square bracket in Eq. (2) set to zero gives

w® = K°c® + mz for waves polarized along z (ordinary waves);
since our interest is with waves polarized in the x-y plane
we shall henceforth disregard this. The curley bracket in
Eq. (2) set to zero gives the dispersion relation for waves
of mixed x-y polarization (extraordinary waves). The
polarization is
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cyclotron maser at the fundamental and second-harmonic,
with a view towards high-power millimeter wave operation.

Operation of cyclotron masers at higher frequency
would seem to demand stronger wave-particle coupling at the
higher harmonics than has heretofore been demonstrated. In
other contexts, however, high harmonic cyclotron resonance
effects have been long observed in laboratory and ionospher-
ic plasmas with non-Maxwellian velocity distributions. Thus
Landauer (7) has reported observations of upwards of 40
harmonics in noise emission from low pressure discharges.
Crawford, et al. (8) have observed about 10 resonances in
transmission across a plasma column. These observations,
together with multiple harmonic observations in ionospheric
top~side soundings have been reviewed by Crawford (9).
These multiple harmonic interactions have been explained in
terms of coupling, at the plasma boundary, between long
wavelength electromagnetic modes, and short wavelength elec-
trostatic modes (10). The model presented in the present
paper is for a suggested means to exploit these multiple
harmonic couplings to produce useful cyclotron maser oscil-
lations at the higher harmonics. In this way it may be
possible to extend the useful frequency regime for cyclotron
masers to above 1000 GHz, using available laboratory mag-
netic fields.

Fig. 1. Geometry for ideal-
ized cyclotron harmonic
maser. Plane mirrors are at
x = *L; the uniform slab
electron beam fills -2 < x <
2; the static magnetic field
is aligned along z; modes of
interest are polarized in
the x-y plane.

Our basic model is shown in Fig. 1. The electron beam
is guided by a uniform static magnetic field B = ézB ; we
take its distribution of parallel (u) and perpendicuiar (w)
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A cyclotron resonance maser configuration is proposed which
may allow operation at the higher cyclotron harmonics. In-
stability growth rates at the higher harmonics are shown to
be significant when coupling between transversely- and lon-
gitudinally-polarized waves occurs at the electron beam
boundary, for radiation propagating across the static mag-
netic field. With experimental parameters well within
practical ranges, oscillation in a single device, tunable
from about 100 to 1000 GHz, is shown to be possible.

Some of the earliest discussions of the cyclotron
resonance maser gain mechanism stressed the existence of
gain at the cyclotron harmonics, as well as at the funda-
mental (1). However, most device development in the past
few years has been limited to fundamental or second-har- N
monic interactions. This, of course, would limit the ap- "
plicability of cyclotron resonance masers to frequencies _!
below about 300 GHz, corresponding to second-harmonic oper- -
ation in a 53.6 kG magnetic field. At the shorter milli- -

meter~ and sub-millimeter wavelengths, quasi-optical struc-

tures must be employed to provide good mode selectivity <Y
without undue mode competition. Both theory (2,3) and de~- -
vice development (4,5) have appeared in which quasi-opti- ) a
cal structures are employed. A recent work (6) reformu- *

lates linear and non-linear analysis for a quasi-optical
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bandwidth values (~20%) were not observed in
the slow-wave region. The conditions for wide
bandwidth require grazing incidence between
beam and guide lines (cf. Fig. 2). For this to be
possible for the dispersion curve shown would
have required a lower magnetic field (1.9 kG)
and a higher slope, corresponding to a =2, V
=60 kKV. But with a=2, our thecretical calcula-
tions indicate that beam velocity -spread values
higher than 5% will severely degrade the gain;
for the gun available the momentum spread, al-
though not measured, was probably higher than
5.1 Thus to observe gain in the presence of
large velocity spread evidently required higher
a values, making the grazing condition inaccessi-
ble in these experiments. For intersecting con-
ditions, such as those shown in Fig. 2(a), higher
values of o result;, gain can then occur even for
large velocity spread. Beyond these qualitative
points, a more detailed comparison between theo-
ry and experiment is probably not justified since
the actual distribution function f(y, «) was not
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